ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Maysa Mohamed Mohamed

Email(s): maysa.mahammed@gmail.com

DOI: 10.52711/0974-4150.2022.00051   

Address: Maysa Mohamed Mohamed
Master of Biochemistry, Faculty of Science, Cairo Un Cairo University.
*Corresponding Author

Published In:   Volume - 15,      Issue - 4,     Year - 2022


ABSTRACT:
The purpose of this study was to compare the effects of native and gamma-irradiated Cerastes cerastes venom on breast and colon cancer cell lines. The anti-proliferative impact of the venoms determined using the MTT assay. Quantitative real time PCR used to evaluate the expression of apoptosis-related genes. IC50 of gamma-irradiated venom was significantly reduced than native venom recorded IC50 values of (19.93±0.867 and 2.131 ±0.095)µg/ml and (8.921±0.515 and 0.9454±0.055)µg/ml against MCF-7 and HCT-116 cell lines, respectively. Both venoms significantly induced the down-regulated Bcl-2 gene and up-regulated P53 gene and Casp-3. Both venoms significantly enhanced the antioxidant enzymes' activity levels of H2O2, while insignificantly reduced GSH enzyme activity. MDA was significantly elevated post treatment of native venom compared to irradiated venom and was a negative control for both cell lines. Gamma radiation can create changes in the components of snake venom, allowing it to be detoxified; gam-ma radiation has a significant effect on decreasing venom toxicity while having no influence on immunogenicity in the examined cell lines.


Cite this article:
Maysa Mohamed Mohamed. Anticancer Potential of Native and Gamma Irradiated Snake Venom against MCF-7 and HCT-116 Cell Lines: In Vitro Study. Asian Journal of Research in Chemistry. 2022; 15(4):284-4. doi: 10.52711/0974-4150.2022.00051

Cite(Electronic):
Maysa Mohamed Mohamed. Anticancer Potential of Native and Gamma Irradiated Snake Venom against MCF-7 and HCT-116 Cell Lines: In Vitro Study. Asian Journal of Research in Chemistry. 2022; 15(4):284-4. doi: 10.52711/0974-4150.2022.00051   Available on: https://ajrconline.org/AbstractView.aspx?PID=2022-15-4-8


REFERENCES:
1.    Abdel-Aziz, S. A. A; Mohamed, A. F; Zahkouk, S. A. M; Ali R. A. M. Evaluation of Anticancer Activity of Some Venomous Animal Toxins on Human Breast and Colon Cancer Cell Lines and Related Antioxidant Profile. International Journal of Advanced Research 2017, 5 (2): 2036–53. https://doi.org/10.21474/ijar01/3376.
2.    Burin, S. M.; Menaldo, D. L.; Sampaio, S. V.; Frantz, F. G.; Castro, F. A. An overview of the immune modulating effects of enzymatic toxins from snake venoms. International Journal of Biological Macromolecules, 2018, 109, 664–671. https://doi.org/10.1016/j.ijbiomac.2017.12.101.
3.    Caproni, P.; Baptista, J.A.; Almeida, T.L.; Passos, L.A.; Nascimento, N. Study of Irradiated Bothropstoxin-1 with 60Co Gamma Rays: Immune System Behavior. J. Ven. Anim. Tox. Incl. Trop. Dis. 2009, 15: 216-225.” J. Ven. Anim. Tox., 216–25.
4.    Shaban, E. A. Influence of Ionizing Radiation on Cobra (Naja Haje) and Cerastes Cerastes Venoms: Toxicological and Immunological Aspects. The Egyptian Journal of Hospital Medicine. 2003,13 (1): 99–111. https://doi.org/10.21608/ejhm.2003.18235.
5.    Samy, E.M.; Shaaban, E.A.; Kenawy, S.A.; Galal, M.A.; Salama, W.H. Evaluation of the effect of gamma rays on Echis Coloratus snake venom through toxicological, immunological and biological studies. Inter. J. Sci. Res. 2015. Publication, 5: ISSN 2250-3153.” J. Sci. Res. Publication 5: 2250–3153.
6.    Aarti, C.; Khusro, A. Snake venom as Anticancer agent- Current Perspective. Int. J. Pure App. Biosci. 2013, 1 (6): 24-29.
7.    Karam, H.; Mohamed, M. Beneficial effect of low dose gamma irradiation or quercetin on Cerastes cerastes snake venom induced toxicity in male rats, Toxin Reviews, 2021, DOI: 10.1080/15569543.2019.1580746.
8.    Oussedik-Oumehdi, H.; Laraba-Djebari, F. Irradiated Cerastes cerastes venom as a novel tool for immunotherapy. Immunopharmacology and Immunotoxicology, 2008, 30(1), 37–52. https://doi.org/10.1080/08923970701812324.
9.    Li, L., Huang, J.; Lin, Y. Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins, 2018, 10(9), 346. https://doi.org/10.3390/toxins10090346.
10.    Karam, H.; Shaaban, E.; Fahmy, A.; Zaki, H.; Kenawy, S. Improvement of Naja haje snake antivenom production using gamma radiation and a biotechnological technique. Toxin Reviews. 2019, 40. 1-11. Doi: 10.1080/15569543.2019.1700381
11.    Geretto, M.; Ponassi, M.; Casale, M.; Pulliero, A.; Cafeo, G.; Malagreca, F.; and Profumo, A.; Balza, E.; and Bersimbaev, R.; and Kohnke, F.; and Rosano, C.; and Izzotti, A. A novel calix ‘[4]pyrrole derivative as a potential anticancer agent that forms genotoxic adducts with DNA. Scientific Reports. 2018, 8. DOI:10.1038/s41598-018-29314-9.
12.    El Sharkawi, F.; Saleh, S.; and Mohamed, A. Potential anti cancer activity of snake venom, bee venom and their components in liver and breast carcinoma. IJPSR, 2015; Vol. 6(8): 3224-3235.Doi: 10.13040/IJPSR.0975-8232.6(8).3224-35.
13.    Marino, A.; Battaglini, M.; De Pasquale, D.; Degl'Innocenti, A.; Ciofani, G. Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Scientific reports, 2018, 8(1), 6257. https://doi.org/10.1038/s41598-018-24697-1.
14.    Bocian, A.; Sławek, S.; Jaromin, M.; Hus, K. K.; Buczkowicz, J.; Łysiak, D.; Petrílla, V.; Petrillova, M.; Legáth, J. Comparison of Methods for Measuring Protein Concentration in Venom Samples. Animals: an open access journal from MDPI, 2020, 10(3), 448. https://doi.org/10.3390/ani10030448.
15.    Sadawe, I.A.; Meiqal, N.H.; Bensaber, S.M.; Maamar, M.S.; Hermann, A.; Alshoushan, A.; Gbaj, A.M. Characterization of Libyan Cobra [ Naja haje ] Venom using Fluorescence and UV-Visible Spectroscopy, Journal of Clinical and Community Medicine, 2020, 129–132. https://doi.org/10.32474/JCCM.2020.02.000127.
16.    Marone, M.; Mozzetti, S.; De Ritis, D.; Pierelli, L.; Scambia, G. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biological procedures online, 2001, 3, 19–25. https://doi.org/10.1251/bpo20.
17.    Jain, D.; Kumar, S. Snake venom: a potent anticancer agent. Asian Pacific Journal of Cancer Prevention: APJCP, 2012, 13[10], 4855–4860. https://doi.org/10.7314/apjcp.2012.13.10.4855.
18.    Blagosklonny, M. Why Therapeutic Response May Not Prolong the Life of a Cancer Patient: Selection for Oncogenic Resistance. Cell cycle (Georgetown, Tex.). 2006, 4. 1693-8. DOI:10.4161/cc.4.12.2259.
19.    Ibrahim, A. S.; Khaled, H. M.; Mikhail, N. N.; Baraka, H.; Kamel, H. Cancer incidence in Egypt: results of the national population-based cancer registry program. Journal of Cancer Epidemiology, 2014, 437971. https://doi.org/10.1155/2014/437971.
20.    Mohamed Abd El-Aziz, T.; Garcia Soares, A.; Stockand, J. D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins, 2019, 11(10), 564. https://doi.org/10.3390/toxins11100564.
21.    Shanbhag, V.K.L. Applications of snake venoms in treatment of cancer. Asian Pac. J. Trop. Biomed. 2015, 5:275–276. doi:10.1016/S2221-1691[15]30344-0.
22.    Ferraz C. R.; Arrahman A.; Xie C.; Casewell, N. R., Lewis, R. J.; Kool, J.; Cardoso, F. C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution. DOI=10.3389/fevo.2019.00218.
23.    Munawar, A.; Ali, S. A.; Akrem, A.; Betzel, C. Snake Venom Peptides: Tools of Biodiscovery. Toxins, 2018, 10[11], 474. https://doi.org/10.3390/toxins10110474.
24.    Saber, S.A; Mohamed, A.F.; El-Fiky, A.A. and Eldaly, H.H. In Vitro Evaluation of Antibacterial Potential of Cerastes Vipera Venom against Gram-Positive and Gram-Negative Bacterial Strains. The Egyptian Journal of Hospital Medicine, 2019, Vol. 77 [6], Page 5804-5816.
25.    Demain, A. L.; Vaishnav, P. Natural products for cancer chemotherapy. Microbial Biotechnology, 2011, 4(6), 687–699. https://doi.org/10.1111/j.1751-7915.2010.00221.x.
26.    Ozverel, C. S.; Damm, M.; Hempel, B. F.; Göçmen, B.; Sroka, R.; Süssmuth, R. D.; Nalbantsoy, A. Investigating the cytotoxic effects of the venom proteome of two species of the Viperidae family (Cerastes cerastes and Cryptelytrops purpureomaculatus) from various habitats. Comparative Biochemistry and Physiology. Toxicology and Pharmacology, 2019,: CBP, 220, 20–30. https://doi.org/10.1016/j.cbpc.2019.02.013.
27.    Giribaldi, J.; Smith, J.J.; Schroeder, C.I. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells, Biotechnology Advances, Volume 50, 2021, 107769, , https://doi.org/10.1016/j.biotechadv.2021.107769.
28.    Calderon, L. A.; Sobrinho, J. C.; Zaqueo, K. D.; de Moura, A. A.; Grabner, A. N.; Mazzi, M. V.; Marcussi, S.; Nomizo, A.; Fernandes, C. F.; Zuliani, J. P.; Carvalho, B. M.; da Silva, S. L.; Stábeli, R. G.; Soares, A. M. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed research international, 2014, 203639. https://doi.org/10.1155/2014/203639.
29.    Oliveira, K. C.; Spencer, P. J.; Ferreira, R. S.; Jr; Nascimento, N. New insights into the structural characteristics of irradiated crotamine. The journal of venomous animals and toxins including tropical diseases, 2015, 21, 14. https://doi.org/10.1186/s40409-015-0013-z.
30.    Oussedik-Oumehdi, H.; Laraba-Djebari, F. Irradiated Cerastes cerastes Venom as a Novel Tool for Immunotherapy. Immunopharmacology and Immunotoxicology. 2008, 30. 37-52. DOI: 10.1080/08923970701812324.
31.    Mukherjee, A. K.; Saviola, A. J.; Burns, P. D.; Mackessy, S. P. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis: An International Journal on Programmed Cell Death, 2015, 20(10), 1358–1372. https://doi.org/10.1007/s10495-015-1157-6.
32.    Salama, W.H.; Ibrahim, N.M.; El Hakim, A.E.; Bassuiny, R.I.; Mohamed, M.M.; Mousa, M.M.; F.M., Ali. L-Amino Acid Oxidase from Cerastes Vipera Snake Venom: Isolation, Characterization and Biological Effects on Bacteria and Tumor Cell Lines. Toxicon: Official Journal of the International Society on Toxinology, 2018, 150, 270–279.
33.    Zainal Abidin, S. A.; Lee, Y. Q.; Othman, I.; Naidu, R. Malaysian Cobra Venom: A Potential Source of Anti-Cancer Therapeutic Agents. 2019, Toxins, 11(2), 75. https://doi.org/10.3390/toxins11020075.
34.    Akef, H.; Kotb, N.; Abo-Elmatty, D.; Salem, S. Anti-proliferative Effects of Androctonus amoreuxi Scorpion and Cerastes cerastes Snake Venoms on Human Prostate Cancer Cells. Journal of Cancer Prevention, 2017, 22(1), 40–46. https://doi.org/10.15430/JCP.2017.22.1.40.
35.    Costa, T. R.; Burin, S. M.; Menaldo, D. L.; de Castro, F. A.; and Sampaio, S. V. Snake venom L-amino acid oxidases: an overview on their antitumor effects. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 2014, 20, 23. https://doi.org/10.1186/1678-9199-20-23.
36.    Tavares, C.; Maciel, T.; Burin, S.; Ambrósio, L.; Ghisla, S.; Sampaio, S.; Castro, F. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines. Revista brasileira de hematologia e hemoterapia, 2016, 38(2), 128–134. https://doi.org/10.1016/j.bjhh.2016.03.004
37.    De Melo Alves Paiva, R.; de Freitas Figueiredo, R.; Antonucci, G. A.; Paiva, H. H.; de Lourdes Pires Bianchi, M.; Rodrigues, K. C.; Lucarini, R.; Caetano, R. C.; Linhari Rodrigues Pietro, R. C.; Martins, C. H.; de Albuquerque, S.; Sampaio, S. V. Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom. Biochimie, 2011, 93(5), 941–947. https://doi.org/10.1016/j.biochi.2011.01.009.
38.    Mahmoud, G.; Saber, S.; Elfiky, A.; Mohamed, A. In Vitro Evaluation of Anticancer Potential of Echispyramidum Venom (Viperidae) and Related Genetic and Apoptotic Profile Alterations. The Egyptian Journal of Hospital Medicine, 2019, [4]: 3891-3900. https://doi.org/10.21608/ejhm.2019.41567.
39.    Giménez-Bonafé, P.; Tortosa, A.; Pérez-Tomás, R. Overcoming drug resistance by enhancing apoptosis of tumor cells. Current cancer drug targets, 2009, 9(3), 320–340. https://doi.org/10.2174/156800909788166600.
40.    Díaz-García, A.; Morier-Díaz, L.; Frión-Herrera, Y.; Rodríguez-Sánchez, H., Caballero-Lorenzo, Y., Mendoza-Llanes, D., Riquenes-Garlobo, Y., and Fraga-Castro, J. A. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. Journal of Venom Research, 2013, 4, 5–12.
41.    Pang, Z.; Wenqing, L.; Ruiren, Z. The Agkistrodon Acutus Venom Componets of X in Vitro Anti-Tumor Effect and Mechanism. Life Science Journal, 2010, 7 [1]: 41–45.
42.    Song, J.K.; Jo, M.R.; Park, M.H.; Song, H.S.; An, B.J.; Song, M.J.; Han, S.B.; Hong, J.T. Cell Growth Inhibition and Induction of Apoptosis by Snake Venom Toxin in Ovarian Cancer Cell via Inactivation of Nuclear Factor _B and Signal Transducer and Activator of Transcription 3. Arch. Pharm. Res. 2012, 35, 867–876
43.    Shebl, R.; Mohamed, A.; Ali, A.; Amin, M. Cerastes cerastes and vipera lebetina snake venoms apoptotic - stimulating activity to human breast cancer cells and related gene modulation. Journal of Cancer Science and Therapy. 2012, 4. 317-323. Doi: 10.4172/1948-5956.1000161.
44.    Park, M. H.; Jo, M.; Won, D.; Song, H. S.; Han, S. B.; Song, M. J.; Hong, J. T. Snake venom toxin from Vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer, 2012, 12, 228. https://doi.org/10.1186/1471-2407-12-228.
45.    Adams, J. M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324–1337. https://doi.org/10.1038/sj.onc.1210220.
46.    Santhosh, M. S.; Sundaram, M. S.; Sunitha, K.; Jnaneshwari, S.; Devaraja, S.; Kemparaju, K.; Girish, K. S. Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight. Cytotechnology, 2016, 68(1), 73–85. https://doi.org/10.1007/s10616-014-9752-x.
47.    Dkhil, M. A.; Al-Quraishy, S.; Farrag, A. R. H.; Aref, A. M.; Othman, M. S. and Moneim, A. E. A. Oxidative Stress and Apoptosis Are Markers in Renal Toxicity Following Egyptian Cobra [Naja Haje] Envenomation. Pak. J. Zool., 2014, 46[6]: 1719-1730.
48.    Park, M. H.; Son, D. J.; Kwak, D. H.; Song, H. S.; Oh, K. W.; Yoo, H. S.; Lee, Y. M.; Song, M. J.; Hong, J. T. Snake venom toxin inhibits cell growth through induction of apoptosis in neuroblastoma cells. Archives of Pharmacal Research, 2009, 32(11), 1545–1554. https://doi.org/10.1007/s12272-009-2106-0.
49.    Al-Asmari, A. K.; Riyasdeen, A.; Islam, M. Scorpion Venom Causes Apoptosis by Increasing Reactive Oxygen Species and Cell Cycle Arrest in MDA-MB-231 and HCT-8 Cancer Cell Lines. Journal of Evidence-Based Integrative Medicine, 2018, 23, 2156587217751796. https://doi.org/10.1177/2156587217751796.
50.    Franco, R.; Cidlowski, J. A. Apoptosis and glutathione: beyond an antioxidant. Cell Death and Differentiation, 2009, 16(10), 1303–1314. https://doi.org/10.1038/cdd.2009.107.
51.    Mandal, I.; Manna, S.; and Venkatramani, R. UV-Visible Lysine-Glutamate Dimer Excitations in Protein Charge Transfer Spectra: TDDFT Descriptions Using an Optimally Tuned CAM-B3LYP Functional. The Journal of Physical Chemistry. 2019, B, 123(51), 10967–10979. https://doi.org/10.1021/acs.jpcb.9b07827.
52.    Ghanghro, A.; Ul, N.; Qureshi, H.; Ghanghro, I.; Jahangir, T.; and Bhurgri, M.; Ahmed, Z.; and Ahmed, S. Sds-page profile and biochemical study on the venom of some medically important snakes of Sindh. IJBPAS, 2016, 6808-6815.
53.    Cho, Y.; Song, K. B. Effect of G-Irradiation on the Molecular Properties of BSA and b-Lactoglobulin. J. Biochem. Mol. Biol. 2000, 33, 133-137.
54.    Minton, S.; Weinstein, S. Colubrid Snake Venoms: Immunologic Relationships, Electrophoretic Patterns. Copeia. 1987, 993. 10.2307/1445563.
55.    Bennacef-Heffar, N.; Laraba-Djebari, F. Evaluation of the effect of gamma rays on the venom of Vipera lebetina by biochemical study. Canadian Journal of Physiology and Pharmacology, 2003, 81(12), 1110–1117. https://doi.org/10.1139/y03-112.
56.    Abdel-Aty, A.M.; Salama, W. H.; Ali, A.A.; Mohamed, S.A. A Hemorrhagic Metalloprotease of Egyptian Cerastes Vipera Venom: Biochemical and Immunological Properties. Int. J. Biol. Macromol. 2019, 130, 695-704.
57.    Chapelier, A.; Desmadril, M.; Houée-Levin, C. Gamma radiation effects on alpha-lactalbumin: structural modifications. Canadian Journal of Physiology and Pharmacology, 2001, 79(2), 154–157. https://doi.org/10.1139/cjpp-79-2-154.
58.    El-Yamany, M. F.; Samy, E. M.; Salama, W. H.; Shaaban, E. A.; Abd El-Latif, H. A. Gamma irradiated protease from Echis pyramidum venom: A promising immunogen to improve viper bites treatment. Toxicon: official journal of the International Society on Toxicology, 2020, 188, 108–116. https://doi.org/10.1016/j.toxicon.2020.10.013.
59.    Abdel-Aty, A.M.; Wahby, A.F. Purification and Characterization of Five Snake Venom Metalloproteinases from Egyptian Echis Pyramidum Venom. J. Toxicol. Sci. 2014, 39, 523-536
60.    Dyab, A.; Ahmed, M.; Abdelazeem, A. Prevalence and Histopathology of Trichinella Spiralis Larvae of Slaughtered Pigs in Cairo Governorate, Egypt. Journal of the Egyptian Society of Parasitology, 2019; 49(2): 439-442. doi: 10.21608/jesp.2019.68187.
61.    Lee, Y.; Song, K. B. Effect of gamma-irradiation on the molecular properties of myoglobin. Journal of Biochemistry and Molecular Biology, 2002, 35(6), 590–594. https://doi.org/10.5483/ bmbrep.2002.35.6.590.

Recomonded Articles:

Author(s): Ram C. Senwar, Krishna K. Rathore, Anita Mehta

DOI: 10.5958/0974-4150.2017.00022.0         Access: Open Access Read More

Author(s): Kadhiravansivasamy, S. Sivajiganesan, T. Periyathambi, V. Nandhakumar, M. Pugazhenthi

DOI: 10.5958/0974-4150.2017.00016.5         Access: Open Access Read More

Author(s): Sapna Tyagi, Tanveer Alam, Mohd Azhar Khan, Hina Tarannum, Neha Chauhan

DOI: 10.5958/0974-4150.2018.00092.5         Access: Open Access Read More

Author(s): S. N. Battin, A. H. Manikshete, S. K. Sarasamkar, M. R. Asabe, D. J. Sathe

DOI: 10.5958/0974-4150.2017.00112.2         Access: Open Access Read More

Author(s): Rukhsana A. Rub, Asma Mukadam, Javed Pinjari, Ajaz Nathani, Aaisha Sagri

DOI:         Access: Open Access Read More

Author(s): Rahul Uttamrao Devkar, Durga Prasad Rao P, Kishore Gokavarapu, Shiva Rama Krishna Samala

DOI: 10.5958/0974-4150.2019.00015.4         Access: Open Access Read More

Author(s): Pandurang N Dhabale, Vijay Jadhav, Chandrakant Raut

DOI:         Access: Open Access Read More

Author(s): NivedhaSrinivasan, VinothKumar.S

DOI: 10.5958/0974-4150.2018.00154.2         Access: Open Access Read More

Author(s): Cheyma Bensaci, Zineb Ghiaba, Messaouda Dakmouche, Mokhtar Saidi, Mohamed Hadjadj, Assia Belfar, Mahdi Belguidoum

DOI: 10.5958/0974-4150.2019.00063.4         Access: Open Access Read More

Author(s): A. Elumalai, M. Chinna Eswaraiah, Raju Kasarla, Palla Ravi

DOI:         Access: Open Access Read More

Author(s): Sharma Pramod, Raghuvanshi Dhiraj, Chaturvedi Prerna

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags