Acoustic Parameters of Glycine, α-Alanine and β-Alanine in Aqueous and Aqueous D-Glucose Solutions At 298.15 K.

 

Sanjibita Das and Upendra N. Dash*

Dept. of Chemistry, I.T.E.R, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar-751030, Odisha (India)

*Corresponding Author E-mail: dr.upendranath.dash@gmail.com

 

ABSTRACT:

The acoustical parameters of glycine, α-alanine  and  β-alanine have been measured in aqueous and aqueous D-Glucose solutions at 298.15K. The molar sound velocity (R), molar compressibility (W), free length (Lf), free volume (Vf),  internal pressure (πi), relaxation time (τ), ultrasonic attenuation (α/f2) and Van der- Waals constant (b) values have been calculated from the experimental data. These parameters are used to discuss the molecular interactions in the solutions.

 

KEYWORDS: Acoustical parameters, D-Glucose, amino acid, ultrasonic velocity, compressibility.

 


 

INTRODUCTION:

The measurement of ultrasonic velocity provides qualitative information about the nature and strength of molecular interaction in solutions. The study of the solution properties of the solutions consisting of polar and non-polar components finds applications in industrial and technological processes. In the present investigation, we have evaluated the acoustic parameters such as the molar sound velocity(R) , molar compressibility (W), free length (Lf), freevolume (Vf),internal pressure (πi),relaxation time (τ), ultrasonic attenuation (α/f2)  and van der- Waals constant (b) at 298.15 K for the solutions of amino acids  in water and water + D-Glucose mixtures where the mass percentage of D-Glucose was varied from 5 to 20 % with 5% increments. The results are discussed in the light of molecular interactions.

 

MATERIALS AND METHODS:

All chemicals used were of AnalaR grades. Conductivity water (Sp. cond. ~ 10-6 S cm-1) was used to prepare solutions of D-Glucose (5, 10, 15 and 20 wt%) and  the solutions were used on the same day. The solutions of glycine, α-alanine and β-alanine were prepared on the molal basis and conversion of molality to molarity was done by using the standard expression1 using  the density  values of the solutions determined at 298.15K. Solutions were kept for 2 hours in a water thermostat maintained at the required temperature accurate to within ±0.1K before use for density measurements. Density measurements were done by using a specific gravity bottle (25ml capacity) as described elsewhere2 At least five observations were taken and differences in any two readings did not exceed ±0.02%. An ultrasonic interferometer (Model No.F-81,Mittal Enterprises ,New Delhi) operating at a frequency of 2MHz and overall accuracy of ±0.5 m/s was used for the velocity measurement  at 298.15K only. Viscosity measurements were made by using an Ostwald’s viscometer (25 ml capacity) in a water thermostat whose temperature was controlled to ±0.05K. The values of viscosity so obtained were accurate to within ± 0.3× 10-3 CP. The amino acid content in the solutions varied over a range of 0.01 to 0.08 mol dm-3 in all the solvents.

 

Theoretical Aspects:

From the ultrasonic velocity (U),density (d) and viscosity (η) data, the following parameters have been calculated.

 

(1)Molar sound velocity3 (R) :   R = M d-1 U1/3

Where, M is the effective molecular weight (M = Σ mi xi ), in which mand  xi are the  molecular  weight and the mole fraction of the individual constituents, respectively.

(2) Molar Compressibility 4 (W): According to Wada,  

W= M d-1Ks-1/7

 

Where, W is a constant called Wada’s constant or   molecular compressibility which is independent of temperature and pressure.

 

(3) Intermolecular free length5 (Lf): It is the distance between the surfaces of the molecules. It can be calculated using isentropic compressibility by Jacobson’s empirical relation  Lf  = KІ Ks1/2

Where,  KІ is the Jacobson’s constant which is temperature dependent and is obtained from the literature3.

 

(4) Free Volume (Vf):  Suryanarayan et  al. 6 obtained a formula for free volume in terms of the  ultrasonic velocity (U) and the viscosity of the liquid (η)  as

Vf  =( MU/Kη)3/2

 


where, M is the effective molecular weight (M = Σ mi xi ),in which mand xi are the molecular weight and the mole fraction of the individual constituents, respectively. K is a temperature independent constant which is equal to 4.28×109 for all   liquids.

(5) Internal pressure (πi) :According  to  Suryanarayan7, internal pressure is given by

π= bІRT (Kη/U)1/2 (d2/3/ M7/6)

 

where,  bІ is the packing factor of liquid which is equal to 1.78 for close packed hexagonal structure and 2 for cubic packing. For many liquids bІ is equal to 2. KІ is a dimensionless constant having a value of  4.28 × 109  independent of temperature and nature of liquid.

 

(6) Relaxation time8 (τ):τ = 4η/3dU2

where, the symbols have their usual meaning.

(7) Ultrasonic  Attenuation 9 (α/f2) :α/f2 = 4π2τ /2U

(8) van der Waals  constant10:  van  der  Waals  constant (b) also called co-volume in the van  der  Waals  equation is given by the formula

 

b = M/d[1-(RT/MU2){1+(MU2/3RT)}1/2-1]

Where, R is the gas constant , M is the molecular weight.

 

RESULTS AND DISCUSSION:

From the measured  values of the ultrasonic velocity and density of the solutions of  glycine, α-alanine and  β-alanine in aqueous and aqueous D-Glucose solutions reported earlier,11 the values of the molar sound velocity (R) evaluated by means of eqn.(1)  are given in Table 1.

 

 


 

TABLE – 1 (Values   of   parameters  U(ms-1),  R (  m-8/3    s-1/3),  W (N-1 m-1),  Lf     (m), Vf   (m3/mol),   π i  (Nm-2) , τ  (s),  α/fand  b for glycine , α-alanine and β-alanine in aqueous solutions of D-glucose at 298.15 K.

c

mol dm-3

U

ms-1

R

m-8/3 s-1/3

W

m-1N-1

L(m)

× 10-10

Vf×10-8

m3/mol

πi

Nm-2

τ  (s)

×10-13

α/f2

× 10-15

b

m3 mol-1

 

 

 

 

Glycine

+ Water

 

 

 

 

0.01

1502.9

0.2068

0.3915

4.332

61588

846169.9

5.17

6.784

0.01797

0.02

1516

0.2075

0.3926

4.294

63623

836785.1

5.02

6.527

0.01798

0.04

1522.8

0.2079

0.3934

4.274

64230

833840.4

4.97

6.432

0.01799

0.05

1523.2

0.2080

0.3935

4.272

61950

843797.8

5.09

6.587

0.01800

0.06

1524.8

0.2081

0.3937

4.267

62675

840439.3

5.04

6.523

0.01800

0.08

1532

0.2085

0.3944

4.245

64893

830563.5

4.91

6.316

0.01801

 

 

 

 

α –alanine

+  Water

 

 

 

 

0.01

1503.2

0.2069

0.3917

4.331

62161

843369.2

5.14

6.742

0.01798

0.02

1508.8

0.2072

0.3923

4.315

62759

840450.2

5.09

6.652

0.01799

0.04

1514.4

0.2077

0.3932

4.298

60924

848059.5

5.18

6.744

0.01801

0.05

1516

0.2078

0.3933

4.293

64553

831801.2

4.98

6.475

0.01801

0.06

1532

0.2087

0.3947

4.247

64113

833418

4.95

6.373

0.01802

0.08

1550.4

0.2097

0.3964

4.196

63863

834052.5

4.91

6.244

0.01804

 

 

 

 

β –alanine

+  Water

 

 

 

 

0.01

1503

0.2068

0.3916

4.332

62978

839763.6

5.1

6.684

0.01798

0.02

1504

0.2070

0.3919

4.329

62845

840013.9

5.1

6.689

0.01799

0.04

1505.6

0.2073

0.3924

4.323

63964

834516.5

5.04

6.603

0.01801

0.05

1506.4

0.2074

0.3927

4.320

60755

848727.8

5.22

6.830

0.01801

0.06

1510.4

0.2077

0.3931

4.308

62476

840688.7

5.11

6.670

0.01802

0.08

1516.8

0.2081

0.3939

4.288

60123

851167.8

5.22

6.790

0.01803

 

 

 

 

Glycine

+    5wt%

D-Glucose

 

 

 

0.01

1522.8

0.2134

0.4048

4.234

54958

863306.7

5.66

7.323

0.018469

0.02

1524

0.2135

0.4049

4.230

57070

852429.3

5.51

7.131

0.018473

0.04

1528.8

0.2138

0.4057

4.216

56908

852768.7

5.51

7.106

0.018488

0.05

1529.6

0.2139

0.4058

4.213

56689

853772.5

5.52

7.118

0.018491

0.06

1530

0.2140

0.4059

4.211

57173

851315.1

5.49

7.074

0.018493

0.08

1530.4

0.2141

0.4062

4.209

55773

858023.4

5.58

7.193

0.018504

 

 

 

 

α-alanine

+  5wt%

D - Glucose

 

 

 

0.01

1522.4

0.2135

0.4049

4.236

58884

843376.5

5.41

7.001

0.018479

0.02

1529.6

0.2139

0.4057

4.216

57468

849964

5.47

7.053

0.018489

0.04

1534.4

0.2144

0.4065

4.202

57722

848145.6

5.44

6.995

0.018508

0.05

1536.8

0.2146

0.4069

4.195

55960

856669

5.55

7.122

0.018517

0.06

1539.6

0.2147

0.4073

4.186

57036

851078.9

5.47

7.009

0.018523

0.08

1540.4

0.2149

0.4076

4.183

55479

858617.1

5.58

7.137

0.018534

 

 

 

 

β-alanine

+  5wt%

D-Glucose

 

 

 

0.01

1523.6

0.2135

0.4050

4.233

54445

865757.6

5.69

7.365

0.018478

0.02

1524

0.2136

0.4052

4.231

54311

866236.8

5.7

7.372

0.018485

0.04

1524.4

0.2137

0.4055

4.228

55001

862247

5.65

7.315

0.018496

0.05

1524.8

0.2139

0.4058

4.227

54335

865467.5

5.7

7.374

0.018506

0.06

1527.6

0.2140

0.4061

4.218

56337

854974.9

5.56

7.174

0.01851

0.08

1528.4

0.2143

0.4066

4.215

55619

857955.4

5.61

7.236

0.018532

 

 

 

 

Glycine

+   10wt%

D-Glucose

 

 

 

0.01

1543.6

0.22075

0.4196

4.138

50032

873497.6

6.12

7.814

0.019023

0.02

1544.4

0.22083

0.4197

4.135

49874

874323.8

6.13

7.823

0.019026

0.04

1546.8

0.22116

0.4203

4.128

48782

880206.1

6.22

7.923

0.019045

0.05

1547.2

0.22118

0.4204

4.126

48862

879743.6

6.21

7.910

0.019045

0.06

1550.8

0.22141

0.4208

4.116

51636

863547.8

5.97

7.591

0.01905

0.08

1556.8

0.22178

0.4215

4.099

52783

857005.3

5.86

7.426

0.019058

 

 

 

 

α-alanine

+  10 wt%

D-Glucose

 

 

 

0.01

1543.2

0.22083

0.4197

4.140

53124

855962.6

5.88

7.515

0.019031

0.02

1544.4

0.221

0.4200

4.136

53665

852793.4

5.84

7.456

0.01904

0.04

1548

0.2214

0.4208

4.126

50181

871400.7

6.1

7.770

0.019063

0.05

1554.8

0.22186

0.4216

4.108

52559

857771.1

5.89

7.472

0.019073

0.06

1556.8

0.22196

0.4218

4.101

52450

858357.8

5.89

7.463

0.019073

0.08

1557.6

0.22213

0.4221

4.097

52244

859140.9

5.91

7.480

0.019085

 

 

 

 

β-alanine

+  10 wt%

D-Glucose

 

 

 

0.01

1542.4

0.22070

0.4195

4.141

53778

852700

5.83

7.458

0.019023

0.02

1543.9

0.22080

0.4197

4.136

48797

880712.9

6.22

7.943

0.019026

0.04

1545.6

0.22117

0.4204

4.131

50689

868871.6

6.06

7.737

0.01905

0.05

1546.8

0.22125

0.4206

4.127

51386

864860.1

6.01

7.656

0.019052

0.06

1555.2

0.22176

0.4214

4.104

54885

845800.6

5.72

7.252

0.019062

0.08

1556

0.22186

0.4217

4.100

52643

857460.9

5.88

7.451

0.019068

 

 

 

 

Glycine

+ 15wt%

D-Glucose

 

 

 

0.01

1572

0.22896

0.4361

4.022

39948

922630.9

7.19

9.025

0.019614

0.02

1575.6

0.22920

0.4365

4.013

40058

921628.6

7.17

8.969

0.019619

0.04

1578

0.22945

0.4370

4.006

41895

907586.3

6.95

8.684

0.019632

0.05

1579.6

0.22963

0.4373

4.002

40422

918210.9

7.11

8.879

0.01964

0.06

1580.8

0.22979

0.4376

3.998

40688

915933.4

7.08

8.831

0.019649

0.08

1581.6

0.22995

0.4379

3.995

42277

904004.4

6.9

8.604

0.019659

 

 

 

 

α-alanine

+ 15wt%

D-Glucose

 

 

 

0.01

1569.2

0.22912

0.4364

4.032

47318

871261.7

6.45

8.100

0.019639

0.02

1569.6

0.22925

0.4366

4.030

47081

872433.6

6.47

8.127

0.019649

0.04

1570.4

0.22952

0.4371

4.028

46317

876635.7

6.54

8.216

0.019668

0.05

1571.2

0.22926

0.4367

4.021

45804

880658.9

6.58

8.258

0.019643

0.06

1572

0.22980

0.4376

4.022

44473

888062.6

6.72

8.432

0.019686

0.08

1573.2

0.22999

0.4380

4.018

45632

880130.2

6.61

8.281

0.019698

 

 

 

 

β-alanine

+ 15wt%

D-Glucose

 

 

 

0.01

1569.6

0.22908

0.4363

4.030

47214

872069.4

6.45

8.106

0.019634

0.02

1571.6

0.22918

0.4365

4.024

49672

857430.7

6.23

7.816

0.019634

0.04

1572.4

0.22935

0.4369

4.020

44773

887270.6

6.68

8.373

0.019646

0.05

1574

0.22952

0.4372

4.016

45245

883941.8

6.63

8.301

0.019654

0.06

1578

0.22981

0.4377

4.005

41798

907362.1

6.97

8.711

0.019662

0.08

1580.4

0.23008

0.4382

3.997

42626

901034.3

6.87

8.577

0.019676

 

 

 

 

Glycine

+  20 wt%

D-Glucose

 

 

 

0.01

1592

0.23804

0.4543

3.935

36812

926456.3

7.77

9.620

0.020309

0.02

1596

0.23835

0.4549

3.925

38816

909961.1

7.48

9.243

0.020318

0.04

1600

0.23873

0.4555

3.915

37266

921929.3

7.67

9.458

0.020334

0.05

1604.2

0.23902

0.4560

3.904

39451

904378.6

7.37

9.061

0.020342

0.06

1606.8

0.23901

0.4561

3.895

39544

904020.9

7.34

9.012

0.02033

0.08

1608.2

0.23920

0.4564

3.891

37988

915893.2

7.54

9.245

0.02034

 

 

 

 

α-alanine

+  20wt%

D-Glucose

 

 

 

0.01

1586.4

0.23767

0.4537

3.948

39122

908099.4

7.48

9.299

0.020301

0.02

1590.8

0.23802

0.4543

3.937

38071

916034.2

7.6

9.423

0.020313

0.04

1594.8

0.23852

0.4552

3.927

37991

915917.6

7.6

9.400

0.020338

0.05

1596.4

0.23874

0.4556

3.923

36849

924928.4

7.76

9.579

0.02035

0.06

1600

0.23905

0.4562

3.914

37693

917621.1

7.63

9.399

0.020362

0.08

1601.6

0.20742

0.3958

3.908

30640

1081038

7.59

9.341

0.017657

 

 

 

 

β-alanine

+   20wt%

D-Glucose

 

 

 

0.01

1599.2

0.23833

0.4548

3.916

38563

912412

7.49

9.24

0.020303

0.02

1605.2

0.23865

0.4553

3.900

39020

908765.2

7.41

9.10

0.020306

0.04

1610

0.23919

0.4563

3.889

41314

890888.8

7.12

8.719

0.020331

0.05

1613.6

0.23946

0.4568

3.879

42747

880591.8

6.95

8.488

0.020339

0.06

1621.2

0.23995

0.4576

3.861

39399

904570.5

7.3

8.883

0.02035

0.08

1625.6

0.20824

0.3972

3.848

31684

1069753

7.3

8.858

0.01764

 


As observed, the molar sound velocity increases with increase in concentration of the solutions for all the amino acids in all the solvents studied. This type of behavior is similar to that observed earlier 8,9.

 

It is known that when a solute dissolves in a solvent some of the solvent molecules are attached to the ions (generated from the solute) because of ion-solvent interactions. Since the solvent molecules are oriented in the ionic field (i.e electrostatic fields of ions) the solvent molecules are more compactly packed in the primary solvation shell as compared to the packing in the absence of the ions. This is the reason why the solvent is compressed by the introduction of ions. Thus the electrostatic field of the ions causes compression of the medium giving rise to a phenomenon called electrostriction. Since the solvent molecules are compressed they do not respond to any further application of pressure. So the solution becomes harder to compress, i.e the compressibility decreases and internal pressure increases. Hence isentropic compressibility as well as internal pressure describes the molecular arrangement in the liquid medium. The increase in internal pressure, πi due to electrostatic field of ions is given by eqn5.

 

Suryanarayan  et. al6  showed that the free energy of activation, ΔG is almost equal to the cohesive energy, πi Vm. The result indicates that ΔG increases with concentration and D-Glucose content in the mixed solvent. Positive values of πi indicate the presence of some specific interactions between unlike molecules in the components.

 

Free volume, Vf is the effective volume accessible to the centre of a molecule in a liquid. The structure of a liquid is determined by strong repulsive forces in the liquid with the relatively weak attractive forces providing the internal pressure which held the liquid molecules together. The free volume seems to be conditional by repulsive forces whereas the internal pressure is more sensitive to attractive forces. These two factors together uniquely determine the entropy of the system. Thus, the internal pressure, free volume and temperature seem to be the thermodynamic variables that describe the liquid system of fixed composition. 12,13

 

It is seen that free volume varies irregularly with solute concentration in water but decreases in aqueous D- glucose solutions. As observed, internal pressure changes in a manner opposite to that of free volume. The decrease of     Vf (or increase of πi) indicates the formation of hard   and/or tight solvation layer around the ion14,15. The fractional free volume (Vf / V) is a measure of disorderliness due to increased mobility of the molecules in a liquid. It is observed that mobility/ disorderliness decreases with concentration and D-Glucose content. This implies that the frictional force exerted by different layers of liquid increases with concentration and D-Glucose content. As the frictional force increases, ultrasonic absorption increases16. In the present case, ultrasonic absorption or attenuation varies irregularly with concentration and D-Glucose content.

 

CONCLUSION:

From the ultrasonic velocity and density values of the solutions of amino acids in aqueous and aqueous D-Glucose solutions, the acoustic parameters like molar sound velocity, molar compressibility, free volume, free length, internal pressure, ultrasonic attenuation have been calculated at 298.15 K. The results show that the specific ion-ion, ion-solvent and solvent-solvent interactions play an important role for explaining the acoustic parameters. However, any deviation from the usual behavior is probably due to characteristic structural changes in the system concerned.

 

REFERENCES:

1.       Robinson,R.A and Stokes, R.H., Electrolyte Solutions, Butterworths  Scientific Publication,London,1955:p.30

2.       Dash,U.N, and Supkar,S. AcousticLetters,1992:16,135.

3.       Nikam,PS , etal,. Asian Journal of Chem.1994:6,237.

4.       Rath D.C and Samal , K, Acoustic Letters 1988:29 (12) 49.

5.       B Jacobson, Acta Chem.Scand.6, 1952: 1485.

6.       C V Suryanarayana, Indian J.Pure Appl.Phys., 27, 1989:751.

7.       Dash U.N. et al, Ultra Science 2005:15 (1) 1.

8.       Dash U.N.et al, Indian J.Chem.Technol2004:178(11).

9.       Maharatha D. et al , Researcher 2011:6,3(2).

10.     Ali A. and. Nain, A.K, J. Pure Appl.Ultrason.22,2000:10.

11.     S. Das and U.N. Dash, J. Chem. Pharm. Res.,4(1),2012:754-762

12.     S. Thirumaran and K. J. Sabu, Indian J. Pure Appl. Phys., 47,2009:87-96.

13.     S. Prabakar and K. Rajagopal, J. Pure Appl. Ultrason. 27, 2005: 41-48.

14.     V.K.Syal, S.Chauhan, R.Gautam, Ultrasonics, 36, 1998: 619.

15.     S. Singh et al Indian J. Pure Appl.Phys. 629, 1977:.

16.     T.M. Aminabhavi, Indian J.Technol. 30, 1992: 303.

 

 

 

Received on 21.11.2011         Modified on 18.12.2011

Accepted on 30.12.2011         © AJRC All right reserved

Asian J. Research Chem. 5(1):  January 2012; Page 53-56