Synthesis of some New Pyrimidines from Chalcone Containing an Imin Group

 

Hanan Falih Mohsin

Department of Chemistry, College of Education for Girls, University of Kufa, Najaf, Iraq

*Corresponding Author E-mail: hanan.alshebly@uokufa.edu.iq

 

ABSTRACT:

In this present study, p-amino acetophenone condensed with p-nitro benzaldehyde in ethanolic solution of sodium hydroxide to yield corresponding chalcone, which reacts with various aromatic aldehydes in glacial acetic acid to yield corresponding Schiff bases. These chalcones were further reacted with urea, thiourea, guanedin in the presence of base in ethanol, which led to the formation of pyrimidine derivatives. Thin layer chromatography was used to follow the reactions. All the compounds have been characterized by FT-IR Spectroscopy, some of them characterized by (1H -NMR)-spectra and elemental analysis (C.H.N).

 

KEYWORDS: Synthesis of chalcone, Pyrimidine.

 


INTRODUCTION:

The synthesis of chalcone linked with imine group in same compound became of great importance in organic chemistry to synthesis of various compounds.

 

α,β-Unsaturated ketones are biogenetic precursors of flavonoids in higher plants. Also known chemically as chalcones, they consist of open-chain flavonoids in which the two aromatic rings are joined by a three carbon chain [1,2]. They display a wide range of pharmacological properties, including cytotoxity toward cancer cell lines [3,4], anti mitotic , anti mutagenic [5] The chemistry of chalcones has generated intensive scientific interest due to their biological and industrial application. Chalcones are natural biocides and are well known intermediates in the synthesis of heterocyclic compounds exhibiting various biological activities[6] Chalcones and their derivatives possess some interesting biological properties such as antibacterial, antifungal, insecticidal, anesthetic, anti inflammatory, analgesic. Etc[7,8]

 

Pyrimidine derivatives play avital role in many biological processes and in synthesis of many drugs. Many derivatives of pyrimidine have displayed diverse biological activities such as antitumor, hypnotensive, antiulcer, and anticonvulsant[9]

 

EXPERIMENTAL:

Materials

All the chemicals were supplied by BHD and Fluka and used without further purification.

 

Measurement

-The melting point of compounds were determinate by Electro thermal melting point apparatus.

-C.H.N Elemental analysis were carried out by micro analytical unit of 1180 C.H.N Elemental analyzer.

-FT.IR spectra were recorded using (KBr pellets) 4000-400 cm-1 on FT.IR tests can .Shimadzu 8000 Series.

-The 1H-NMR spectra were obtained in DSMO solvent using (Bruker, Ultra .Shield 3000MKZ, Switzerland).

 

Synthesis of chalcones [10]

Equimolar quantity (0.001mol) of 4-aminoacetophenone and p-nitro benzaldehyde  mixed and dissolved in 30 mL of ethanol. To this, 40% sodium hydroxide solution (5 mL) added slowly and mixed occasionally for (5 h), at room temperature. Completion of the reaction was identified by TLC using Silica gel-G. The solvent was evaporated and the precipitation was recrystallized from absolute EtOH to give Comp.(I) Scheme (1).


 

Scheme(1) preparation of Chalcone

 

Scheme(2) preparation of Schiff bases

 

Scheme (3) preparation of pyrimidine

 


Synthesis of Schiff bases (Ia-c):

Ethanolic mixture of compound (I) (0.001mole) with 4-dimethyle amino benzaldehyde, (0.001mole) were refluxed for 8hr at 650C in presence of EtOH(30 ml) with addition (2) drops of glacial acitic acid. The reaction was monitored by TLC using Silica gel-G. The solvent was evaporated and the precipitation was recrystallized from absolute EtOH to give Comp.(Ia-c) Scheme (2)

 

 

Synthesis of Pyrimidines from Chalcones [11]:

A mixture of Schiff bases (Ia-c) of (0.01mole), urea or thiourea or guanedin (0.01mole) in absolute ethanol (25mL) and potassium hydroxide (5mL) refluxed on a water bath for(8h) The reaction was monitored by T.L.C and The solvent was evaporated and the precipitation was recrystallized from absolute EtOH to give comp.(Ia1-c1).

 

Table 1. Physical data of compounds  .

Comp.

M.f

M.Wt

m.p  C°

Yield %,gm

I

C15 H12 N2 O3

 268

120-122

0.21gm 73 %

Ia

C24H21N3 O3

 399

141-143

0.25gm 64 %

Ib

C23 H15 N3O4

 397

189-191

0.39gm 75 %

Ic

C23 H18 N2O5

 402

160-162

0.24gm 61 %

Ia1

C 25H 22N6 O2

 438

105-107

 0.29gm 63 %

Ib1

C 24H 16N6 O3

 436

134-136

 0.3 gm 65.7 %

Ic1

C 24H 19N5 O4

 441

149-`151

 0.32 gm 69 %

Ia2

C 25 H 21N5 O2 S

 455

128-130

 0.31 gm 65 %

Ib2

C 24H 15N5 O3S

 453

165-167

 0.35 gm 73.9 %

Ic2

C 24H 18N4 O4

 458

180-182

 0.36 gm 75 %

Ia3

C 25H 21N5 O3

439

144-146

0.33 gm 71.8 %

Ib3

C 24H 15N5 O4

437

178-180

0.29 gm 63 %

Ic3

C 24H 18N4 O5

442

198-200

0.38 gm 82 %

 

RESULT AND DISCUSSION:

1-(3-aminophenyl)-3-(4-chlorophenyl)prop-2-en-1-one (I)

IR (KBr, cm-1): 1647 (C=O)ketone, 1610 (CH=CH) ethylene, 1600(CH=CH) aromatic, 3225-3371 (-NH2), 3100(-CH) alkenes, 3076(-CH) aromatic

1-{4-[(4-dimethyleaminobenzylidene)amino]phenyl}-3-(4-nitrophenyl)prop-2-en-1-one(Ia)

IR (KBr, cm-1): 1680 (C=O)ketone, 1654 (N=CH) imine, 1600(CH=CH) ethene, 1595(CH=CH) aromatic, 2995(-CH) aliphatic.

 

3-({4-[3-(4-nitrophenyl)acryloyl]phenyl}imino)isoindolin -1-one (Ib)

IR (KBr, cm-1): 1732 (C=O) amide, 1680 (C=O)ketone, 1670 (N=CH) imine, 1614 (CH=CH) ethene, 1519(CH=CH) aromatic, 3192(-CH) alkene, 3421(-NH).  1H NMR (DMSO, δ, ppm) : 2. 20 (1H, d, -CO-CH=), 6. 95 – 7. 75 (18H, Ar-H ) 10. 20 (1H, -CO-NH-).

 

1-{4-[(2-hydroxy-3-methoxybenzylidene)amino]phenyl}-3-(4-nitrophenyl)prop-2-en-1-one(Ic)

IR (KBr, cm-1): 1683 (C=O)ketone, 1650 (N=CH) imine, 1626(CH=CH) ethene, 1595(CH=CH) aromatic, 2966(-CH) aliphatic, 3080(-CH) aromatic, 3120(-CH) alkene, 3394      (-OH). 1H NMR (DMSO, δ, ppm) : 3. 85 (3H, P-OCH3), 2. 20 (1H, d, -CO-CH=), 6. 90 – 7. 60 (18H, Ar-H ) 8. 80(1H, CH=N), 11. 20(1H, O-H).

 

4-(4-(4-(dimethyl amino ) benzylidene amino)phenyl)-6-(4-nitro phenyl)pyrimidine-2-amino (Ia1)

IR (KBr, cm-1) : 1685 (C=N)endo cyclic, 1635(N=CH) imine, 1550(CH=C) aromatic, 2900(-CH) aliphatic, 3255-3400 (-NH2). Anal. Calcd. For C25H21N6O2 : C, 68. 49; H,  5. 02; N, 19. 17. Found: C: 68. 21; H: 5. 00; N: 19. 05%.

 

3-(4-(2-amino-6-(4-nitro phenyl)pyrimidine-4-yl)phenyl imino)isoindolin-1-one (Ib1)

IR (KBr, cm-1): 1637(C=O) amide, 1620 (C=N)endo cyclic, 1590 (N=CH) imine, 1568(CH=CH) aromatic, 3385(-NH), 3277-3473 (-NH2), 3174 (-CH) aromatic

 

5-((4-(2-amino-6-(4-nitrophenyl)pyrimidine-4-yl) phenyl imino)methyl-2-methoxy phenol (Ic1)

IR (KBr, cm-1): 1670 (C=N)endo cyclic, 1656 (N=CH) imine, 1568(CH=CH) aromatic, 2900(-CH) aliphatic, 3220-3330(-NH2), 3356 (-OH). 1H NMR (DMSO, δ, ppm) : 3. 50 (3H, P-OCH3), 6. 90 – 7. 65 (18H, Ar-H ) 8. 70(1H, CH=N), 11. 40(1H, O-H), 9. 40(2H, -NH2).

 

4-(4-(4-(dimethyl amino ) benzylidene amino)phenyl)-6-(4-nitro phenyl)pyrimidine-2-thiol (Ia2)

IR (KBr, cm-1) : 1681 (C=N)endo cyclic, 1651(N=CH) imine, 1618(CH=CH) aromatic, 2922(-CH) aliphatic, 3165 (-CH) aromatic, 2850 (-SH). Anal. Calcd. For C25H21N5O2S: C, 63. 93; H, 4. 61; N, 15. 38. Found: C: 63. 48; H: 4. 32; N: 14. 62%.

 

3-(4-(2-mercapto-6-(4-nitro phenyl)pyrimidine-4-yl)phenyl imino)isoindolin-1-one (Ib2)

IR (KBr, cm-1) : 1699(C=O) amide, 1645 (C=N)endo cyclic, 1616 (N=CH) imine, 1568(CH=CH) aromatic, 3396(-NH), 2840 (-SH), 3105 (-CH) aromatic.

 

5-((4-(2-mercapto-6-(4-nitrophenyl)pyrimidine-4-yl) phenyl imino)methyl-2-methoxy phenol (Ic2)

IR (KBr, cm-1): 1685 (C=N)endo cyclic, 1654 (N=CH) imine, 1560(CH=CH) aromatic, 2928(-CH) aliphatic, 2854(-SH ), 3460 (-OH), 3182 (-CH) aromatic. 1H NMR (DMSO, δ, ppm) : 3. 50 (3H, P-OCH3), 6. 85 – 7. 60 (18H, Ar-H ) 8. 70 (1H, CH=N), 11. 50(1H, O-H), 12. 6 (1H, S-H).

 

4-(4-(4-(dimethyl amino ) benzylidene amino)phenyl)-6-(4-nitro phenyl)pyrimidine-2-ol (Ia3)

IR (KBr, cm-1): 1690 (C=N)endo cyclic, 1640(N=CH) imine, 1624(CH=CH) aromatic, 2924(-CH) aliphatic, 3387 (-OH), 3184(-CH) aromatic. Anal. Calcd. For C25H21N5O3: C, 68. 33; H, 4. 78; N, 15. 94. Found: C: 68. 03; H: 4. 43; N: 15. 65%.

 

3-(4-(2-hydroxy-6-(4-nitrophenyl)pyrimidine-4-yl)phenyl  imino)isoindolin-1-one (Ib3)

IR (KBr, cm-1): 1662 (C=O) amide, 1650 (C=N)endo cyclic, 1616 (N=CH) imine, 1575(CH=CH) aromatic, 3320(-NH), 3410 (-OH).

 

4-(4-(3-hydroxy-4-methoxy benzylidene amino) phenyl)-6-(4-nitrophenyl)pyrimidine-2-ol (Ic3)

IR (KBr, cm-1): 1674 (C=N)endo cyclic, 1600 (N=CH) imine, 1575(CH=CH) aromatic, 2928(-CH) aliphatic, 3050(-CH) aromatic, 3356-3400(-OH). 1H NMR (DMSO, δ, ppm) : 3. 40 (3H, P-OCH3), 6. 95 – 7. 65 (18H, Ar-H ) 8. 98(1H, CH=N), 11. 50(1H, O-H).

 

Fig .(1) FT-IR Spectrum for Comp. (I)

 

Fig .(2) FT-IR Spectrum for Comp. ( Ia)

 

Fig .(3) FT-IR Spectrum for Comp. ( Ib)

 

Fig .(4) FT-IR Spectrum for Comp. ( Ic)

 

Fig .(5) FT-IR Spectrum for Comp. ( Ia1)

 

Fig. (6) FT-IR Spectrum for Comp.(Ib1) 

 

Fig .(7) FT-IR Spectrum for Comp. ( Ic1)

 

Fig .(8) FT-IR Spectrum for Comp. ( Ia2)

 

Fig .(9) FT-IR Spectrum for Comp. ( Ib2)

 

Fig .(10) FT-IR Spectrum for Comp. ( Ic2)

 

Fig .(11) FT-IR Spectrum for Comp. ( Ia3)

 

Fig .(12) FT-IR Spectrum for Comp. ( Ib3)

 

Fig .(13) FT-IR Spectrum for Comp. ( Ic3)

 

Fig .(14) 1H-NMR Spectrum for Comp. ( Ib)

 

Fig .(15) 1H-NMR Spectrum for Comp. ( Ic)

 

Fig . (16) 1H-NMR Spectrum for Comp. ( Ic1)

 

Fig . (17) 1H-NMR Spectrum for Comp. ( Ic3)


 

 


REFERENCES:

1.       Abdullah M. Asiri and Salman A. Khan; (2011)," Synthesis and Anti-Bacterial Activities of a Bis-Chalcone Derived from Thiophene and Its Bis-Cyclized Products", Molecules, 16, 523-531

2.       Rane, R.A.; Telekar, V.N; (2010)  "Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents" .  Bioorg. Med. Chem. Lett, 20, 5681-5685.

3.       Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T; (2010) "Synthesis and biological evaluation of indolyl chalcones as antitumor agents". Boorg. Med. Chem. Lett., 20, 3916-3919.

4.       Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent; (1998) " antimitotic and cell growth inhibitory properties of substituted chalcones". Bioorg. Med. Chem. Lett, 8, 1051-1056.

5.       Edenharder, R.; Petersdorff, I.V.; Rauscher, R.; (1993). " Antimutagenic effects of flavoniods, chalcones and structurally related compounds on the activity of 2-amino-3-methylinidazo[4,5-ƒ]quinoline (IQ) and other heterocyclic amine mutagens from cooked food". Mutat. Res., 287, 261-274.

6.       P. Prasanna Raja, M.S. Riyazulah, V. Siva Kumar; (2010) "Synthesis and Biological Evaluation of some Chalcone Derivatives". ChemTech Res,2(4)

7.       Urmila Gupta, Vineeta Sareen, Vineeta Khatri, Sanjana Chugh,(2005) " Synthesis and antifungal activity of new Fluorine containing 4- (substituted Phenyl azo) Pyrazoles and Isoxazoles", Indian J. of Het.Chem; 14: 265-266

8.       Pandey V.K., Gupta V.D. and Tiwari D.N.,(2004) " Synthesis of Substituted Benzoxazines as potential Antiviral agents", Indian J. of Het.Chem.,  13, 399-400

9.       Solankee. A, Patel. K, and Patel. R. A, (2012) " Facile Synthesis and Studies of Some New Chalcones", E-Journal of Chemistry, 9(4), 1897-1905

10.     B. Anupama, Subas Chandra Dinda, Y. Rajendra Prasad and A. Vasudeva Rao,  (2012) "Synthesis and antimicrobial Activity  of somenew 2,4,6-trisubstituted Pyrimidines", IJRPC, 2(2).

11.     M.V. Jyothi, Y. Rajendra Prasda, P. Venkatesh  and M. Sureshreddy, (2012) "  Synthesis and Antimicrobial Activity of Some Novel Chalcones of 3-Acetyl Pyridine and their Pyrimidine Derivatives", Chem Sci Trans, 1(3), 716-722.


 

 

 

 

Received on 15.07.2013       Modified on 28.07.2013

Accepted on 05.08.2013      © AJRC All right reserved

Asian J. Research Chem. 6(9): September 2013; Page   849-854