Plant Saponins –A Recent Update

 

Vikrant Arya*, Raneev Thakur

Govt. College of Ayurvedic Pharmaceutical Sciences Joginder Nagar Mandi, H.P., India

(Under the Society for Ayurvedic Pharmacy Education and Training, H.P., India)

*Corresponding Author E-mail: arya.vikrant30@gmail.com

 

 

ABSTRACT:

Saponins are plant glycosides that acquire their name from their soap-like action. Saponin occur naturally in fruits, roots, rhizomes, leaf, bark etc. and have historically been used in traditional system of medicine. Saponins are the utmost essential secondary metabolites from pharmaceutical and industrial point of view. This review is based on the recent phytopharmacological studies of saponins from year 2012 to 2013 which highlight the developments on saponins with their pharmacological activity.

 

KEYWORDS: Saponins, Triterpenoids, Steroids, Glycosides.

 


INTRODUCTION:

Saponin (Latin word 'sapo') means the plant that consists of frothing agent when diluted in aqueous solution. Saponins are glycosides with a distinctive foaming characteristic. They are found in many plants, but get their name from the soapwort plant (Saponaria), the root of which was used historically as a soap.

 

Saponin consists of a polycyclic aglycone that is either a choline steroid or triterpenoid attached via C3 and an ether bond to a sugar side chain. The aglycone is referred to as the sapogenin and steroid saponins are called saraponins. The ability of a saponin to foam is caused by the combination of the non-polar sapogenin and the water soluble side chain. The great complexity of saponin structure arises from the variability of the aglycone structure, the nature of the side chains and the position of attachment of these moieties on the aglycone.

 

Commercially soaps are made by mixing an alkali with oil and then often adding substances such as herbal extracts or essential oils to give it a scent [1-5]. Details of the plant containing saponins, 2012-13 have been shown in Table 1.

 

Consumer demand for saponins coupled with their physicochemical (surfactant) properties and mounting evidence on their biological activity such as Ebenus stellata (anticonvulsant), Clematis tangutica (cardioprotective), Polygonatum odoratum (Antidiabetic),  Dizygotheca elegantissima (Antiproliferative), Pulsatilla chinensis (Molluscicidal), Nigella glandulifera (Analgesic, anti-inflammatory, antitumor, antioxidant agent) etc.  has led to the emergence of saponins as commercially significant compounds with expanding applications in food, cosmetics, and pharmaceutical sectors.  Plant saponins exert potent therapeutic potential.

 

Some of the recent plant saponins with their respective pharmacological activity have been shown in Table 2.

 

 


Table: 1 Saponin in plants [6-49]

Sr. No.

Botanical name

Family

Part

Saponin present

1. 

Nematostylis anthophylla

Rubiaceae

Whole plant

Known triterpene saponin randianin and the two new bioactive triterpene saponins 2"-O-acetylrandianin , 6"-O-acetylrandianin

2. 

Dioscorea nipponica

Dioscoreaceae

Rhizomes

Progenin III, one of the most active spirostanol saponins

3. 

Rusci rhizoma

Liliaceae

Rhizomes

Spirostanolsaponins deglucoruscin, 22-O-methyl-deglucoruscoside, deglucoruscoside, ruscin, ruscogenin-1-O-(α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranoside and 1-O-sulpho-ruscogenin, 3'-O-acetyl-4'-O-sulphodeglucoruscin, 4'-O-(2-hydroxy-3-methylpentanoyl)-deglucoruscin and 4'-O-acetyl-deglucoruscin

4. 

Bacopa monnieri

Scrophulariaceae

Whole plant

Bacoside A and B

5. 

Platycodon grandiflorum

Campanulaceae

Root

Triterpenoid saponins- platycodon A (3-O-β-D-glucopyranosyl-16-O-β-D-glucopyranosyl-2β,3β,16β,21β-tetrahydroxyolean-12-en-28-oic acid) and platycodon B (3-O-β-D-glucopyranosyl-16-O-β-D-xylopyranosyl-2β,3β,16β,21β-tetrahydroxyolean-12-en-28-oic acid)

6. 

Patrinia scabiosaefolia

Valerianaceae

Whole plant

Triterpenoid saponins- 3-O-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (1), 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide, 3-O-β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl-12β, 30-dihydroxy-olean-28,13β-olide, and 3-O-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl-oleanolic acid 28-O-β-D-glucopyranoside

7. 

Aralia taibaiensis

Araliaceae

Bark

New oleanane type triterpenoid saponins –3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucurono-pyranosyl}-olean-11,13(18)-diene-28-oic acid 28-O-β-D-glucopyranosyl ester, 3-O-{β-D-gluco-pyranosyl-(1→3)-[α-l-arabinofuranosyl-(1→4)]-β-D-glucuronopyranosyl}-olean-11,13(18)-diene-28-oic acid 28-O-β-D-glucopyranosyl ester, 3-O-{β-d-glucopyranosyl-(1→2)-[α-l-arabinofuranosyl-(1→4)]-β-D-glucuronopyranosyl}-oleanolic acid 28-O-β-D-glucopyranosyl ester and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucuronopyranosyl}-oleanolic acid 28-O-β-D-glucopyranosyl ester

8. 

Clematis mandshurica

Ranunculaceae

Roots and rhizomes

Triterpene saponins – mandshunosides A and B

9. 

Abrus precatorius

Fabaceae

Leaves and stems

New triterpenoid saponin, 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl subprogenin D

10.    

Xanthoceras sorbifolia

Sapindaceae

Husks

Triterpenoid saponins - 3-O-β-D-glucopyranosyl(1 → 6)-[angeloyl(1 → 2)]-β-D-glucopyranosyl-28-O-α-L-rhamnopyranosyl(1 → 2)-[β-D-glucopyranosyl(1 → 6)]-β-D-glucopyranosyl-21β,22α-dihydroxyl-olean-12-ene, 3-O-β-D-glucopyranosyl-28-O-[β-D-glucopyranosyl(1 → 2)]-β-D-glucopyranosyl-21β,22α-dihydroxyl-olean-12-ene, and 3-O-β-D-glucopyranosyl-28-O-[α-L-rhamnopyranosyl(1→2)]-β-D-glucopyranosyl-21β,22α-dihydroxyl-olean-12-ene

11.    

Cestrum ruizteranianum

Solanaceae

Fruits

Delta5-spirostene and delta5-furostene

12.    

Momordica charantia

Cucurbitaceae

Fruits

3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, momordicine I, momordicine II,

3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside, kuguaglycoside G

13.    

Gynostemma pentaphyllum

Cucurbitaceae

Fruits

Gypensapogenin A, gypensapogenin B, gypensapogenin C, 3-O-β-d-glucopyranosyl-gypensapogenin D and gypensapogenin D

14.    

Ilex kudingcha

Boraginaceae

Leaves

Triterpene saponins - 3β,19α-dihydroxy-12α-ethoxy-urs-13(18)-ene-28,20β-lactone-3-O-[β-D-glucopyranosyl(1 → 3)]-[α-L-rhamnopyranosyl(1 → 2)]-α-L-arabinopyranoside and 3β,19α-dihydroxy-12α-methoxy-urs-13(18)-ene-28,20β-lactone-3-O-[α-L-rhamnopyranosyl(1 → 2)]-α-L-arabinopyranoside

15.    

Thalictrum fortunei

Ranunculaceae

Aerial parts

Cycloartane glycosides– 3-O-β-D-glucopyranosyl (1 → 4)-β-d-fucopyranosyl-(22S,24Z)-cycloart-24-en-3β,22,26,30-tetraol 26-O-β-D-glucopyranoside and 3-O-β-D-glucopyranosyl (1 → 4)-β-D-fucopyranosyl-(22S,24Z)-cycloart-24-en-3β,22,26, 29-tetraol 26-O-β-D-glucopyranoside

16.    

Patrinia scabiosifolia

Valerianaceae

Whole plants 

Triterpenoidsaponins (1-3) - The structures of the new compounds were established as 11α, 12α-epoxy-3-O-β-D-xylopyranosyl-olean-28, 13β-olide, 11α, 12α-epoxy-3-O-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyl-olean-28, 13β-olide, and 3-O-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyl oleanolic acid 28-O-β-D-glucopyranoside

17.    

Antonia ovata

 Loganiaceae

Leaves

Pentacyclic triterpenoid saponins- antoniosides E-J

3-O-[β-D-glucopyranosyl-(1→2)]-[β-D-glucopyranosyl-(1→4)]-[β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl(1→6)]-β-D-glucopyranoside, linked at C-3 of esterified derivatives of polyhydroxyoleanene triterpenoids (theasapogenol A and 15α-hydroxy-theasapogenol A)

18.    

Panax japonicus

Araliaceae 

Fruits

Seven new dammarane-type triterpenoid saponins, chikusetsusaponin FK1, chikusetsusaponin FK2, chikusetsusaponin FK3, chikusetsusaponin FK4, chikusetsusaponin FK5, chikusetsusaponin FK6, and chikusetsusaponin FK7, and eleven known triterpenoidsaponins, ginsenoside Rb3, ginsenoside Rc, chikusetsusaponin VI, ginsenoside Re, ginsenoside Rg1, pseudo-ginsenoside RS1, notoginsenoside R1, chikusetsusaponin L5), chikusetsusaponin L10, chikusetsusaponin IVa, and chikusetsusaponin V, chikusetsusaponin FK5 and chikusetsusaponin FM1, and five known triterpenoid saponins, ginsenoside Rb3, ginsenoside Rc, ginsenoside Re, ginsenoside Rg1, and floralquinquenoside E

19.    

Smilacina japonica

Liliaceae

Rhizome

Furosteroidal saponin -26-O-beta-D-glucopyranosyl-(25R)-furost-5-en-3beta, 12, 17alpha, 22xi, 26-pentol-12-O-acetyle-3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranoside

20.    

Gypsophila pilulifera

Caryophyllaceae

Under-ground parts

Triterpenoid saponin  as 3-O-β-D-galactopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→4]-α-l-rhamnopyranosyl-(1→2)-β-D-fucopyranosyl ester

21.    

Salicornia bigelovii

Salicornioideae

Whole plant

Bigelovii A, Bigelovii B

22.    

Clematis argentilucida

Ranunculaceae

Roots

Triterpenoid saponins -

3β-O-[β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl] hederagenin-11,13-dien-28-oic acid and 3β-O-{β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl} oleanolic acid

23.    

Fritillaria pallidiflora

 Liliaceae

Dry bulbs

Steroidal saponins –

Pallidifloside D, Pallidifloside E , Pallidifloside G, Pallidifloside H  and Pallidifloside

24.    

Aralia elata

Araliaceae

Leaves

3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosyl (1→3)-β-D- glucopyranosyl oleanolic acid (1), 3-O-[β-D-glucopyranosyl (1→3)-β-D-glucopyranosyl (1→3)]-[β-D-glucopyranosyl (1→2)]-β-d-glucopyranosyl hederagenin 28-O-β-D-glucopyranoside, 3-O-{[β-D-glucopyranosyl (1→2)]-[β-d-glucopyranosyl (1→3)-β-d-glucopyranosyl (1→3)]-β-D-glucopyranosyl} oleanolic acid 28-O-β-D-glucopyranosyl ester and 3-O-[β-D-glucopyranosyl (1→2)]-[β-D-glucopyranosyl (1→3)]-β-d-glucopyranosyl caulophyllogenin  and two known compounds, 3-O-[β-D-glucopyranosyl (1→3)-α-l-arabinopyranosyl]-echinocystic acid and 3-O-α-L-arabinopyranosyl echinocystic acid

25.    

Ophiopogon japonicus

Asparagaceae

Tuber

Steroidal saponins, ophiopogonins H-O

26.    

Sanguisorba officinalis

 Asparagaceae

Roots

19-oxo-18,19-seco-ursane-type triterpenoid saponin, named sanguisoside

27.    

Smilacina japonica

 Ruscaceae

Dried rhizomes and roots

Steroidal saponins, japonicoside A, japonicoside B and japonicoside C were isolated from. Their structures were elucidated as (25S)-5α-spirostan-9(11)-en-3β-ol 3-O-β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside, (25S)-5α-spirostan-9(11)-en-3β,17α-diol 3-O-β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside  and (25S)-5α-spirostan-9(11)-en-3β,17α,24α-triol 3-O-β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside

28.    

Salicornia herbacea

Chenopodiaceae

Whole plant

3β-hydroxy-23-oxo-30-noroleana-12, 20(29)-diene-28-oic acid 3-O-β-D-glucuronopyranosyl-28-O-β-d-glucopyranoside

29.    

Ardisia kivuensis

Myrsinaceae

Stem

Ardisikivuoside {3-O-beta-D-xylopyranosyl-(1 --> 3)-beta-D-glucopyranosyl-(1 --> 4)-beta-D-xylopyranosyl-3beta-hydroxy-13beta,28-epoxyoleanan-16-oxo-30-al}

30.    

Panax japonicus

Araliaceae 

 Fruits

Dammarane-type triterpenoid saponins, chikusetsusaponin FT(1), chikusetsusaponin FT(2), chikusetsusaponin FT(3), chikusetsusaponin FT(4), and six known triterpenoid saponins, chikusetsusaponin FK(4), chikusetsusaponin FK(5), chikusetsusaponin FK(2), chikusetsusaponin FK(3), chikusetsusaponin LN(4), and chikusetsusaponin IVa (14)

31.    

Psammosilene tunicoides

Caryophyllaceace

Roots

Oleanane-type triterpenoid saponins, tunicosaponin A (TSA) and tunicosaponin E (TSE)

32.    

Polygala japonica

Polygalaceae

Roots

Triterpenoid saponins polygalasaponins LI-LIII

33.    

Xanthoceras sorbifolia

Sapindaceae

Seeds oil

Oleanane-type triterpenoid saponins named sorbifoliasides A-F (1-6) and bunkankasaponin F

34.    

Ilex asprella

Aquifoliaceae

Roots

Triterpenoid saponins, asprellanosides A and B

35.    

Rhodiola crenulata

Crassulaceae

Roots

3R,5R,8R)-3-O-[α-l-arabinopyranosyl (1 → 6)-β-d-glucopyranosyl]-5-hydroxymegastigma-6,7-dien-9-one and (1R)-1-O-(β-d-glucopyranosyl)-phenylethylene glycol

36.    

Gynostemma pentaphyllum

Cucurbitaceae

Aerial parts

Dammarane-type triterpene saponins, gypenbiosides A and B

37.    

Ardisia japonica

Myrsinaceae

Leaves

Ardisianoside B and 3β-O-β-d-glucopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)]-α-l-arabinopyranosyl-13β,28-epoxy-16α-hydroxyoleanane

38.    

Avena sativa

Poaceae

From grains

Steroidal saponin isolated nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside (1), nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside, and nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-6-O-sulfoglucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside

39.    

Asparagus racemosus

Liliaceae

Roots

Furostanol steroidal saponin, shatavaroside C

40.    

 Camellia oleifera

Theaceae

Tea seed pomace

Oleiferasaponin A - 22-O-cis-2-hexenoyl-A-barrigenol 3-O-[β-D-galactopyranosyl(1→2)] [β-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl(1→3)]-β-D-glucopyranosiduronic acid

41.    

Tripterygium hypoglaucum

Celastraceae

Root barks

Triterpenoid saponin hypoglaside A

42.    

Ilex pubescens

Primulaceae

Roots

Triterpene saponins- 3-O-β-D-glucopyranosyl(1 → 3)-α-L-arabinopyranosyl urs-12,18-diene-24,28-dioic acid 28-O-β-D-glucopyranoside, 3-O-β-D-glucopyranosyl(1 → 3)-α-L-arabinopyranosyl urs-12,18-diene-24,28-dioic acid, and 3-O-β-D-glucopyranosyl(1 → 3)-α-L-arabinoyranosyl-30-hydroxyurs-12,19-diene-24,28-dioic acid 28-O-β-D-glucopyranoside 

43.    

Paris polyphylla

Melanthiaceae

Aerial parts

Steroidal saponins, namely paris-VII, (25R)-5-en-spirost-3beta,17alpha-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2) [alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glycopyanoside (PGRR), paris-H, paris-VI, paris-II , paris-III, gracillin, paris-I and paris-V

44.    

Maesa lanceolata

 Myrsinaceae

Stem wood

Triterpene saponinscharacterized as 16α,21β-diacetoxy-22α-angeloyl-28-hydroxyolean-12-ene3-O-[α-rhamnopyranosyl-(1″″ → 6″″ )-β-glucopyranosyl-(1  → 3')][β-glucopyranosyl-(1″ → 2')]-β-glucuronopyranoside, 16α-acetoxy-21β-hydroxy-22α-angeloyl-13β,28-oxydoolean-28α-ol 3-O-[α-rhamnopyranosyl-(1″″ → 6)-β-glucopyranosyl-(1 → 4')][β-glucopyranosyl-(1″ → 2')]-α-arabinopyranoside, 16α-acetoxy-21β,22α-diangeloyl-13β,28-epoxyoleanane 3-O-[α-rhamnopyranosyl-(1″″ → 6)-β-glucopyranosyl-(1 → 4')][β-glucopyranosyl-(1″ → 2')]-β-xylopyranoside, and 16α,22α-diacetoxy-13β,28-oxydoolean-28α-ol 3-O-[β-glucopyranosyl-(1″ → 2')][β-glucopyranosyl-(1 → 3')]-β-glucuronopyranoside

 


 

Table 2: Pharmacological status of Saponins 2012-13 [50-74]

Sr. No.

Botanical name

Family

Part used

Biological activity

1.

Ebenus stellata

Fabaceae

Aerial parts

Anticonvulsant Activity

2.

Viola betonicifolia

Violaceae

Whole plant 

Prokinetic,  laxative effects

3.

Funtumia elastica

Apocynaceae

Leaf and bark

Antimicrobial, anti-inflammatory

4.

Clematis tangutica

Ranunculaceae

Whole plants 

Cardioprotective effects

5.

Anacardium occidentalis

Anacardiaceae

Leaf

Analgesic and anti-inflammatory

6.

Dizygotheca elegantissima

Araliaceae

Aerial parts

Antiproliferative

7.

 Plumeria rubra 

Apocynaceae

Pod

Abortifacient activity 

8.

Commelina africana and Ageratum conyzoides

Commelinaceae Asteraceae

Whole plant

Antidiabetic

9.

Coccinia cordifolia

Cucurbitaceae

Fruits

Antimicrobial

10.

Pulsatilla chinensis

Ranunculaceae

Aerial parts

Molluscicidal

11.

 Solanum xanthocarpum

Solanaceae

Fruits

Antiurolithiatic

12.

Rhizoma paridissaponins

Trilliaceae

Rhizomes

Sedative-hypnotic

13.

Adenophora triphylla

Campanulaceae

Roots

Cytotoxicity

14.

Chamaelirium luteum

Liliaceae

Roots

Antiproliferative activity

15.

Pleurospermum kamtschaticum

Umbelliferae

Aerial parts

Cytotoxicity

16

Paris polyphylla  var. Yunnanensis

Melanthiaceae

Stems and leaves

Antimicrobial activity

17.

Tarenna grevei

Rubiaceae

Whole plant

Antiproliferative 

18.

Fagonia indica

Zygophyllaceae

Aerial parts

Cell-selective apoptosis or necrosis

19.

 Cimicifuga racemosa

Ranunculaceae

Whole plant

Osteoprotective effects

20.

Tupistra chinensis

Asparagaceae

Leaf

Anti-endotoxin effect

21.

Nigella glandulifera

Ranunculaceae

Seeds

Analgesic,anti-inflammatory, antitumor,  antioxidant

22.

Entada phaseoloides

Fabaceae

Whole plant

Anti-diabetic

23.

Bauhinia variegata Mimusops elengi

Fabaceae

Leaf Bark

Molluscicidal activity

24.

 Allium sativum  var. Voghiera

Lilliceae

Bulbs

Antifungal

25.

Gymnema sylvestre

Asclepiadaceae

Leaf

Anti-diabetic

26.

Polygonatum odoratum

Asparagaceae

Root

Anti-diabetic

27.

Entada phaseoloides

Fabaceae

Seed

Anti-diabetic

 


CONCLUSION:

Present review revealed that plant saponins are able to produce diversified and pharmacologically active metabolites and thus can provide a potential source of new bioactive compounds. Based on the studies so far, it can be concluded that saponins hold a lot of therapeutic potential. It is not only their generalized detergent and cell permeability enhancing properties that are interesting, but also their action as antidiabetic, anti-inflammatory, anticancer, antimicrobial, cardioprotective etc. Based on this observation, the author of this review article has tried to provide information (phytopharmacological status) on the saponins produced by the plants from year 2012 to 2013. Thus the review would be helpful and provides useful information for the researchers of the same field.

 

REFERENCES:

1.     K. Hostettmann, A. Marston. Chemistry and pharmacology of natural products: Saponins. Cambridge University Press, New York 1995.

2.       Francis, George, Zohar Kerem, Harinder PS Makkar and Klaus Becker. "The biological action of saponins in animal systems: a review". British Journal of Nutrition 88 (6): 587–605, 2002

3.       Viqar Uddin Ahmad, Anwer Basha. Spectroscopic Data of Saponins: The Triterpenoid Glycosides. Taylor and Francis, 2000.

4.       W. Oleszek, A. Marston. Saponins in Food, Feedstuffs and Medicinal Plants. Kluwer Academic Publishers, Netherlands 2000.

5.       Rani KohIsaac Tay. Saponins: Properties, Applications and Health Benefits (Biochemistry Research Trends: Botanical Research and Practices). Nova Science Pub Inc, 2012.

6.       Dai YHarinantenaina LBrodie PJBirkinshaw CRandrianaivo RApplequist WRatsimbason MRasamison VEShen YTenDyke KKingston DG. Two antiproliferative triterpene saponins from Nematostylis anthophylla from the highlands of Central Madagascar. Chem Biodivers.  2013; 10(2):233-40.

7.       Liu TYu HLiu CBao YHu XWang YLiu BFu YTang SJin F. Preparation of progenin III from total steroidal saponins of Dioscorea nipponica Makino using a crude enzyme from Aspergillus oryzae strain. J Ind Microbiol Biotechnol. 2013  [Epub ahead of print]

8.       Barbic MWiller EA, Rothenhofer M, Heilmann JFurst RJurgenliemk G. Spirostanol saponins and esculin from Rusci rhizoma reduce the thrombin-induced hyperpermeability of endothelial cells. Phytochemistry 2013. [Epub ahead of print]

9.       Deepak MAmit A. 'Bacoside B' - the need remains for establishing identity. Fitoterapia. 2013. doi: 10.1016/j. fitote.2013.03.011.

10.    Ma GGuo WZhao LZheng QSun ZWei JYang JXu X. Two new triterpenoid saponins from the root of Platycodon grandiflorum. Chem Pharm Bull (Tokyo). 2013;61(1):101-4.

11.    Gao L, Zhang L, Li NLiu JYCai PLYang SL. New triterpenoid saponins from Patrinia scabiosaefolia. Carbohydr Res. 2011;346(18):2881-5.

12.    Bi LTian XDou FHong LTang HWang S. New antioxidant and antiglycation active triterpenoid saponins from the root bark of Aralia taibaiensis. Fitoterapia. 2012;83(1):234-40.

13.    He YXLi LZhang KLiu ZR. Cytotoxic triterpene  saponins from Clematis mandshurica. J Asian Nat Prod Res. 2011;13(12):1104-9.

14.    Xiao ZHWang FZSun AJLi CRHuang CGZhang S. A new triterpenoid saponin from Abrus precatorius Linn. Molecules. 2011;17(1):295-302.

15.    Cui HXiao HRan XKLi YYDou DQKang TG. Two new oleanane-type pentacyclic triterpenoid saponins from the husks of Xanthoceras sorbifolia Bunge. J Asian Nat Prod Res. 2012;14(3):216-23.

16.    Galarraga EMitaine-Offer ACAmaro-Luis JMMiyamoto TTanaka CPouységu L, Quideau S, Rojas LBLacaille-Dubois MA. Steroidal saponins from the fruits of Cestrum ruizteranianum. Nat Prod Commun. 2011;6(12):1825-6.

17.    Keller ACMa JKavalier AHe KBrillantes AMKennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine. 2011;19(1):32-7.

18.    Li NWu CFXu XYLiu ZYLi XZhao YQ. Triterpenes possessing an unprecedented skeleton isolated from hydrolyzate of total saponins from Gynostemma pentaphyllum. Eur J Med Chem. 2012;50:173-8.

19.    Zuo WJDai HFZeng YBWang HChen HQWang JH. Two new triterpenoid saponins from the leaves of Ilex kudingcha. J Asian Nat Prod Res. 2012;14(4):308-13.

20.    Zhang XTMa SWJiao HYZhang QW Two new saponins from Thalictrum fortunei. J Asian Nat Prod Res. 2012;14(4):327-32.

21.    Gao LZhang LWang LMLiu JYCai PLYang SL. New triterpenoid saponins from Patrinia scabiosifolia. J Asian Nat Prod Res. 2012;14(4):333-41.

22.    Alabdul Magid ALalun NLong CBorie NBobichon HMoretti CLavaud C. Triterpene saponins from Antonia ovata leaves. Phytochemistry.2012;77:268-74.

23.    Yoshizaki KYahara S. New triterpenoid saponins from fruits specimens of Panax japonicus collected in Kumamoto and Miyazaki prefectures. Chem Pharm Bull (Tokyo). 2012; 60(3):354-62.

24.    Zhao SYang LHan ZHan M. Furosteroidal saponin from Smilacina japonica Zhongguo Zhong Yao Za Zhi. 2011;36(24):3453-6.

25.    Arslan ICelik AChol JH. A cytotoxic triterpenoid saponin from under-ground parts of Gypsophila pilulifera Boiss.& Heldr. Fitoterapia. 2012;83(4):699-703.

26.    Wang QZ, Liu XF, Shan YGuan FQChen YWang XYWang MFeng X. Two new nortriterpenoid saponins from Salicornia bigelovii Torr. and their cytotoxic activity. Fitoterapia. 2012;83(4):742-9.

27.    Hai WCheng HZhao MWang YHong LTang HTian X. Two new cytotoxic triterpenoid saponins from the roots of Clematis argentilucida. Fitoterapia. 2012;83(4):759-64.

28.    Shen SLi GHuang JChen CRen BLu G, Tan Y, Zhang JLi XWang J. Steroidal saponins from Fritillaria pallidiflora Schrenk. Fitoterapia. 2012;83(4):785-94.\

29.    Zhang YMa ZHu CWang LLi LSong S. Cytotoxic triterpene saponins from the leaves of Aralia elata. Fitoterapia. 2012;83(4):806-11.

30.    Zhang TKang LPYu HSLiu YXZhao YXiong CQZhang JZou PSong XBLiu CMa BP. Steroidal saponins from the tuber of Ophiopogon japonicus. Steroids. 2012;77(12):1298-305.

31.    Zhang PYQin SHZhao HXWang FLGuo HJBai H. A new triterpenoid saponin from Sanguisorba officinalis. J Asian Nat Prod Res. 2012;14(6):607-11.

32.    Liu XZhang HNiu XFXin WQi L. Steroidal saponins from Smilacina japonica. Fitoterapia. 2012;83(4):812-6.

33.    Kim YAKong CSLee JIKim HPark HYLee HSLee CSeo Y. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea. Bioorg Med Chem Lett. 2012;22(13):4318-22.

34.    Ndontsa BLTchinda ATeponno RB, Mpetga JS, Frédérich MTane P. Ardisikivuoside, a new triterpenoid saponin from Ardisia kivuensis (Myrsinaceae). Nat Prod Commun. 2012;7(4):515-6.

35.    Yoshizaki K, Murakami MFujino HYoshida NYahara S. New triterpenoid saponins from fruit specimens of Panax japonicus collected in Toyama prefecture and Hokkaido (2). Chem Pharm Bull (Tokyo). 2012;60(6):728-35.

36.    Zhang JCao WTian JYue R, Li L, Guo BShan LYu BZhang W. Evaluation of novel saponins from Psammosilene tunicoides and their analogs as immunomodulators. Int Immunopharmacol. 2012;14(1):21-6.

37.    Li CFu JYang JZhang DYuan YChen N. Three triterpenoid saponins from the roots of Polygala japonica Houtt. Fitoterapia. 2012;83(7):1184-90.

38.    Yu L, Wang X, Wei XWang MChen LCao SKang NQiu F. Triterpenoid saponins from Xanthoceras sorbifolia Bunge and their inhibitory activity on human cancer cell lines. Bioorg Med Chem Lett. 2012;22(16):5232-8.

39.    Zhou MXu MMa XXZheng KYang KYang CRWang YFZhang YJ Antiviral triterpenoid saponins from the roots of Ilex asprella.P lanta Med. 2012;78(15):1702-5.

40.    Yang YNZhang FFeng ZMJiang JSZhang PC. Two new compounds from the roots of Rhodiola crenulata. J Asian Nat Prod Res. 2012;14(9):862-6.

41.    Shi LLu FZhao H, Zhao YQ. Two new triterpene saponins from Gynostemma pentaphyllum. J Asian Nat Prod Res. 2012;14(9):856-61.

42.    Li QLi WHui LP, Zhao CY, He LKoike K. 13,28-Epoxy triterpenoid saponins from Ardisia japonica selectively inhibit proliferation of liver cancer cells without affecting normal liver cells. Bioorg Med Chem Lett. 2012;22(19):6120-5.

43.    Pecio ŁJędrejek D, Masullo M, Piacente SOleszek W, Stochmal A. Revised structures of avenacosides A and B and a new sulfated saponin from Avena sativa L. Magn Reson Chem. 2012;50(11):755-8.

44.    Sharma U, Kumar N, Singh B. Furostanol saponin and diphenylpentendiol from the roots of Asparagus racemosus. Nat Prod Commun. 2012;7(8):995-8.

45.    Zhang XFHan YYBao GHLing TJZhang LGao LPXia T. A new saponin from tea seed pomace (Camellia oleifera Abel) and its protective effect on PC12 cells. Molecules. 2012;17(10):11721-8.

46.    Li CJ, Xie FG, Yang JZLuo YMChen XGZhang DM. Two sesquiterpene pyridine alkaloids and a triterpenoid saponin from the root barks of Tripterygium hypoglaucum. J Asian Nat Prod Res. 2012;14(10):973-80.

47.    Li L, He YX, Gou ML, Dai C. Three new triterpenoid  saponins  from Ilex pubescens. J Asian Nat Prod Res. 2012;14(12):1169-74.

48.    Liang Y, Liu Z, Gao WMan S. Determination of nine steroidal saponins in Paris polyphylla from different areas of Guizhou province by HPLC. Zhongguo Zhong Yao Za Zhi. 2012;37(15):2309-12.

49.    Manguro LOLemmen PHao PWong KC. Triterpene saponins of Maesa lanceolata stem wood. J Asian Nat Prod Res. 2012;14(11):987-1001.

50.    Khodaparast ASayyah MSardari S. Anticonvulsant Activity of Hydroalcoholic Extract and Aqueous Fraction of Ebenus stellata in Mice. Iran J Basic Med Sci. 2012;15(3):811-9.

51.    Muhammad NRehman NUKhan HSaeed MGilani AH. Prokinetic and laxative effects of the crude methanolic extract of Viola betonicifolia whole plant in rodents. BMC Complement Altern Med. 2013;13(1):70.

52.    Agyare CKoffuor GABoakye YDMensah KB.Antimicrobial and anti-inflammatory properties of Funtumia elastica. Pharm Biol. 2013;51(4):418-25

53.    Zhang WWang XTang HWang MJi LWen AWang J. Triterpenoid saponins from Clematis tangutica and their cardioprotective activities. Fitoterapia. 2013;84:326-31.

54.    Onasanwo SAFabiyi TDOluwole FSOlaleye SB. Analgesic and anti-inflammatory properties of the leaf extracts of Anacardium occidentalis in the laboratory rodents. Niger J Physiol Sci. 2012;27(1):65-71.

55.    Vassallo APesca MAmbrosio LMalafronte NMelle NDDal Piaz FSeverino L. Antiproliferative oleanane saponins from Dizygotheca elegantissima. Nat Prod Commun. 2012;7(11):1427-30.

56.    Dabhadkar DZade V. Abortifacient activity of Plumeria rubra (Linn) pod extract in female albino rats. Indian J Exp Biol. 2012;50(10):702-7.

57.    Agunbiade OSOjezele OMOjezele JOAjayi AY. Hypoglycaemic activity of Commelina africana and Ageratum conyzoides in relation to their mineral composition. Afr Health Sci. 2012;12(2):198-203.

58.    Khatun SPervin FKarim MRAshraduzzaman MRosma A. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant. Pak J Pharm Sci. 2012;25(4):757-61.

59.    Chen YQXu QMLiu YLLi XRYang SLZhuge HX. Laboratory evaluation of the molluscicidal activity of Pulsatilla chinensis (Bunge) Regel saponins against the snail Oncomelania hupensis. Biomed Environ Sci. 2012;25(2):224-9.

60.    Patel PKPatel MAVyas BAShah DRGandhi TR. Antiurolithiatic activity of saponin rich fraction from the fruits of Solanum xanthocarpum Schrad. and Wendl. (Solanaceae) against ethylene glycol induced urolithiasis in rats. J Ethnopharmacol. 2012;144(1):160-70.

61.    Liu ZGao WMan SWang JLi NYin SWu SLiu C. Pharmacological evaluation of sedative-hypnotic activity and gastro-intestinal toxicity of Rhizoma Paridissaponins. J Ethnopharmacol. 2012;144(1):67-72.

62.    Kang MHa IJ, Chun J, Kang SSKim YS. Separation of two cytotoxic saponins from the roots of Adenophora triphylla var. japonica by high-speed counter-current chromatography. Phytochem Anal. 2013;24(2):148-54.

63.    Challinor VLStuthe JMParsons PGLambert LKLehmann RPKitching WDe Voss JJ. Structure and bioactivity of steroidal saponins isolated from the roots of Chamaelirium luteum (false unicorn). J Nat Prod. 2012;75(8):1469-79.

64.    Lee IKChoi SU, Lee KR. Triterpene saponins from Pleurospermum kamtschaticum and their biological activity. Chem Pharm Bull (Tokyo). 2012;60(8):1011-8.

65.    Qin XJSun DJNi WChen CXHua YHe LLiu HY. Steroidal saponins with antimicrobial activity from stems and leaves of Paris polyphylla var. yunnanensis. Steroids. 2012;77(12):1242-8.

66.    Harinantenaina LBrodie PJCallmander MWRazafitsalama LJRasamison VERakotobe EKingston DG. Two antiproliferative saponins of Tarenna grevei from the Madagascar dry forest . Nat Prod Commun. 2012;7(6):705-8.

67.    Waheed ABarker JBarton SJOwen CPAhmed SCarew MA. A novel steroidal saponin glycoside from Fagonia indica induces cell-selective apoptosis or necrosis in cancer cells. Eur J Pharm Sci. 2012;47(2):464-73

68.    Seidlova-Wuttke DStecher GKammann MHaunschild JEder NStahnke VWessels JWuttke W. Osteoprotective effects of Cimicifuga racemosa and its triterpene-saponins are responsible for reduction of bone marrow fat. Phytomedicine. 2012; 19(10):855-60.

69.    Ren JLei LSYu CLHe GYChen NN. Study on the anti-endotoxin effect of saponin from Tupistra chinensis. Zhong Yao Cai. 2012; 35(1):102-5.

70.    Singh KLSingh DKSingh VK. Characterization of the molluscicidal activity of Bauhinia variegata and Mimusops elengi plant extracts against the fasciola vector Lymnaea acuminata. Rev Inst Med Trop Sao Paulo. 2012; 54(3):135-40.

71.    Lanzotti VBarile E, Antignani V, Bonanomi GScala F. Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry. 2012; 78:126-34.

72.    Reddy RMLatha PBVijaya TRao DS. The saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract reduces cafeteria and high-fat diet-induced obesity. Z Naturforsch C. 2012;67(1-2):39-46.

73.    Deng YHe KYe XChen XHuang JLi XYuan LJin YJin QLi P. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects. J Ethnopharmacol. 2012;141(1):228-33. Zheng TShu GYang ZMo SZhao YMei Z. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats. J Ethnopharmacol. 2012; 139(3):814-21.

 

 

 

 

Received on 06.04.2013       Modified on 19.04.2013

Accepted on 30.04.2013      © AJRC All right reserved

Asian J. Research Chem. 6(9): September 2013; Page   871-876