ABSTRACT:
Successful therapeutic outcomes have been achieved through innovative formulation designs that provide efficient drug delivery. This has made it possible to overcome some difficult challenges due to the pathological condition, the body physiology or properties of the therapeutic agent. Liposomes are innovative drug delivery devices developed by formulation scientists, taking after nature’s mechanisms of cellular material transport system and survival. Liposomes, type of vesicular carrier, are proving to be a promising drug delivery system in cancer, infections and other diseases as well as in the field of diagnosis. Liposome are also emerging in the field of cosmetics, dietary as well as phytomedicines. Due its versatility, they are a subject of interest for many researchers to develop an ideal drug delivery system.
Cite this article:
Savita Mandan, Maitreyee Chavan, Anita B. Patil. Liposomes: A Promising Future in Medicine. Asian J. Research Chem. 2020; 13(4):287-290. doi: 10.5958/0974-4150.2020.00056.5
Cite(Electronic):
Savita Mandan, Maitreyee Chavan, Anita B. Patil. Liposomes: A Promising Future in Medicine. Asian J. Research Chem. 2020; 13(4):287-290. doi: 10.5958/0974-4150.2020.00056.5 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-4-10
REFERENCES:
1. Dr. L. K. Omray, Liquid Crystals as Novel Vesicular Delivery System: A Review, Current Trends in Technology and Science, Vol. II, Issue IV, ISSN:2279-0535, 347-349, 2013.
2. Lancelot A, Sierra T, Serrano JL. Nanostructured liquid crystalline particles for drug delivery. Expert Opin Drug Deliv 2014;11(4):547-64.
3. Rego, J.A.; Harvey, Jamie A.A.; MacKinnon, Andrew L.; Gatdula, Elysse (January 2010). "Asymmetric synthesis of a highly soluble 'trimeric' analogue of the chiral nematic liquid crystal twist agent Merck S1011". Liquid Crystals 37 (1): 37–43. doi:10.1080 /02678290903359291.
4. Bunjes H, Rades T. Thermotropic liquid crystalline drugs. J Pharm Pharmacol, 57, 807-16, 2005.
5. Shaikh Zeba, Naik Nikita, Dusane Prachee, Rane Bhushan, Gujarathi Nayan, Ahirrao Rajesh. Liquid Crystalline System: A Novel Approach for Drug Delivery. Journal of Biomedical and Pharmaceutical Research. Vol. 4, Issue 1, 22-32, 2015.
6. Gennes, P.G. and Prost, J (1993). The Physics of Liquid Crystals. Oxford: Clarendon Press. ISBN 0-19-852024-7.
7. Kawamoto H. The history of liquid crystal display. Proceedings of the IEEE, 460-99, 2002.
8. Stevenson CL, Bennett DB, Ballesteros DL. Pharmaceutical liquid crystals: the relevance of partially ordered systems. J Pharm Sci, 94, 1861-79, 2005.
9. Kulichikhin VG, Malkin AY, Papkov SP. Rheological properties of liquid crystalline polymer systems Review. Polymer Science USSR, 26, 499-524, 1984.
10. Martin A. Physical pharmacy. 4th edn. USA: Lippincott Williams and Wilkins. Printed in India at Gopsons Papers Ltd, Noida, 36-7, 2001.
11. Chandrasekhar, S. Liquid Crystals 2ND edition, Cambridge UnivPr Published (1993).
12. Mo, J, Milleret, G and Nagaraj, M orcid.org/0000-0001-9713-1362 (2017) Liquid crystal nanoparticles for commercial drug delivery. Liquid Crystals Reviews, 5 (2). pp. 69-85. ISSN 2168-0396.
13. Mbah, C.C., Builders, P.F., Attama, A.A., 2014a. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Exp. Opin. Drug Deliv. 11 (1), 45_59.
14. Duzgunes N. and G. Gregoriadis, Introduction: The origins of liposomes: Alec Bangham at Babraham, Liposomes, Pt E, 391, 1–3 (2005).
15. Sessa G. and G. Weissman, Phospholipid spherules (liposomes) as a model for biological membranes, J Lipid Res, 9, 310–318 (1968).
16. Chukwuemeka C. Mbah and Anthony A. Attama, Vesicular Carriers as innovative nanodrug delivery formulation formulations, Organic Materials as Smart Nanocarriers for Drug Delivery, 519-539, (2018)
17. New RRC, Chance SM, Thomas SC, Peters W: Nature antileishmanial activity of antimonials entrapped in liposomes. Nature 1978, 272:55–58.
18. Lasic DD: Mixed micelles in drug delivery. Nature 1992, 355:279–280.
19. Svenson CE, Popescu MC, Ginsberg RC: Liposome treatments of viral, bacterial and protozoal infections. Crit Rev Microbiol 1988, 15:S1–S31.
20. Akbarzadeh et al. Nanoscale Research Letters 2013, 8:102
21. Fleige E., M. A. Quadir and R. Haag, Stimuli-responsive polymeric nanocarriers for the con¬trolled transport of active compounds: Concepts and applications, Adv Drug Deliv Rev, 64, 866–884 (2012).
22. Koide H., T. Asai, K. Hatanaka, S. Akai, T. Ishii, E. Kenjo, T. Ishida, H. Kiwada, H. Tsukada and N. Oku, T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes, Int J Pharm, 392, 218–223 (2010).
23. Ishida T., M. Harada, X. Y. Wang, M. Ichihara, K. Irimura and H. Kiwada, Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes, J Controlled Release, 105, 305–317 (2005).
24. Ishida T., K. Atobe, X. Wang and H. Kiwada, Accelerated blood clearance of PEGylated lipo¬somes upon repeated injections: Effect of doxorubicin-encapsulation and high-dose first injection, J Controlled Release, 115, 251–258 (2006a).
25. Ishida T., M. Ichihara, X. Wang, K. Yamamoto, J. Kimura, E. Majima and H. Kiwada, Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes, J Controlled Release, 112, 15–25 (2006b).
26. Theodoulou M, Hudis C, Cardiac profiles of liposomal anthracyclines: greater cardiacsafety versus conventional doxorubicin? Cancer 2004; 100:2052–2063.
27. Immordino M. L., F. Dosio and L. Cattel, Stealth liposomes: Review of the basic science, ratio¬nale, and clinical applications, existing and potential, Int J Nanomed, 1, 297–315 (2006).
28. Amarnath S, Sharma US: Liposomes in drug delivery: progress andlimitations. Int J Pharm 1997, 154:123–140.
29. Shaheen SM, Shakil Ahmed FR, Hossen MN, Ahmed M, Amran MS, Ul-IslamMA: Liposome as a carrier for advanced drug delivery. Pak J Biol Sci 2006,9(6):1181–1191.
30. Iqbal U., H. Albaghdadi, M. P. Nieh, U. I. Tuor, Z. Mester, D. Stanimirovic, J. Katsaras and A. Abulrob, Small unilamellar vesicles: A platform technology for molecular imaging of brain tumors, Nanotechnology, 22, (2011).
31. Sharma A. and U. S. Sharma, Liposomes in drug delivery: Progress and limitations, Int J Pharm, 154, 123–140 (1997).
32. Banerjee S., T. K. Pal and S. K. Guha, Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer, Biochim Biophys Acta-Biomembranes, 1818, 537–550 (2012a).
33. Banerjee S., T. K. Pal and S. K. Guha, Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer, Biochim Biophys Acta-Biomembranes, 1818, 537–550 (2012a).
34. Grant G. J., Y. Barenholz, E. M. Bolotin, M. Bansinath, H. Turndoft, B. Piskoun and E. M. Davidson, A novel liposomal bupivacaine formulation to produce ultralong-acting anal¬gesia, Anesthesiology, 101, 133–137 (2004).
35. Tomsie N., B. Babnik, D. Lombardo, B. Mavcic, M. Kanduser, A. Iglic and V. Kralj-Iglic, Shape and size of giant unilamellar phospholipid vesicles containing cardiolipin, J Chem Inf Model, 45, 1676–1679 (2005).