ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Fatiha Mebarki, Souhaila Meneceur, Nadia Ziani, Khadidja Amirat, Abderrhmane Bouafia

Email(s): abdelrahmanebouafia@gmail.com

DOI: 10.52711/0974-4150.2023.00031   

Address: Fatiha Mebarki1, Souhaila Meneceur2, Nadia Ziani3,5, Khadidja Amirat4,5, Abderrhmane Bouafia2*
1Faculty of Science and Technology, Department of material sciences, Amine Elokhal Elhamaterial Sciences, Amine Elokkal El hadj Moussa Eg Akhamouk University-Tamanrasset,11000, Algeria.
2Department of Process Engineering and Petrochemistry, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria.
3Faculty of Science, Chemistry Department Badji Mokhtar University Annaba, Annaba, Algeria.
4Faculty of Science, Department of Chemistry University of Sétif 1 - Ferhat Abbas, El Bez, Setif 19000 Tamanrasset, Algeria.
5Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued El-Oued, Algeria.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023


ABSTRACT:
To assess the relative toxicity of a mixed series of 21(linear and branched-chain) alcohols and 9 normal aliphatic amines in terms of the 50% inhibitory growth concentration (IGC50) of Tetrahymena Pyriformis, a Quantitative Modeling study know as a Structure-Activity/property/Toxicity Relationship (QSAR/QSPR/QSTR) was conducted (20 training,10 tests). The used least squares LS method has been using MINITAB 16 Software and nom-parametric estimation (least absolute deviation LAD) (robust regression method) has been using Calculation Programs by MATLAB Software. The applied simple linear regression approach is based on theoretical H4p (GETAWAY descriptor) molecular descriptor from DRAGON software The performance of regression is better if the distribution of errors has normal, in this case we use the least squares LS method for statistical analysis. When the data does not have a natural assumption, we move to another method of analysis that is more robust and more frequent for the presence of the points of articulation, which is the least absolut deviation method (LAD). The findings of statistical analysis for the chosen model (QSAR) using simple linear Regression using the least Squares Method were R^2=97.39% ,Q^2=96.69% ,Q_bOOT^2=96.24%,Q_EXT^2=93.91% ,R_adj^2=97.24%, S=0.248 Anderson Darling (AD) test =1.57 >0.752 , symmetry coefficient (ou skeweness) (sk= 2.14>0 ) , flatness coefficient (Kurtosis) (ku=5.75>3) and Jarque and Bera Test (JB= 42.84>5.9942. the results did not follow the normal law (unnormal). The coefficient of determination and the value of standard deviation are both highly sensitive to the presence of aberrant compounds(abnormales), as the R^2value moved from 87, 96 % to 94.18 %, which increased by a value of 6.22% and the value of standard deviation (S) moved from 0.399 to 0.303, it increased by a value of 25 % after removing aberrant compound (abnormalie) are interpreted as better adjustment and they are positively. After removing the aberrant compound, we did not see any change in the lines coefficients, indicatting that the function’s graph is stable, demonstrating the LAD method and increased power, which are unaffected by the presence of aberrant compounds Consequently, which means that the model of one descriptor selected is good and statistically strong, Three influential compounds detected ((one compound of training, two compounds of Test) and important the model and absence of studied sample aberrants compounds.


Cite this article:
Fatiha Mebarki, Souhaila Meneceur, Nadia Ziani, Khadidja Amirat, Abderrhmane Bouafia. Modeling of Inhibition of Tetrahymena pyriformis growth by Aliphatic Alcohols and Amines pollution of l’ environmental. Asian Journal of Research in Chemistry 2023; 16(3):195-4. doi: 10.52711/0974-4150.2023.00031

Cite(Electronic):
Fatiha Mebarki, Souhaila Meneceur, Nadia Ziani, Khadidja Amirat, Abderrhmane Bouafia. Modeling of Inhibition of Tetrahymena pyriformis growth by Aliphatic Alcohols and Amines pollution of l’ environmental. Asian Journal of Research in Chemistry 2023; 16(3):195-4. doi: 10.52711/0974-4150.2023.00031   Available on: https://ajrconline.org/AbstractView.aspx?PID=2023-16-3-1


REFFERENCES:
1.    Khadidja Bellifa, Sidi Mohamed Mekelleche.2012. QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis using quantum chemical descriptors. Arabian Journal of Chemistry, xxx, xxx–xxx
2.    Nadia Ziani, Khadidja Amirat and Djelloul Messadi.2014 Inhibition of Tetrahymena pyriformis growth by Aliphatic Alcohols and Amines: a QSAR Study. Rev. Sci. Technol., Synthèse 29: 51-58.
3.    Stefan M. Kohlbacher, Thierry Langer and Thomas Seidel.2021. QPHAR: quantitative pharmacophore activity relationship: method and validation. Journal of Cheminformatics 13, Article number: 57.
4.    Sajjad Bordbar, Mostafa Alizadeh, Sayyed HojjatHashemi.2013. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel. Materials and Design (Sciences direct) Elseiver.Vo 45,597-604.
5.    Fabrizio Fratini, Patrizia Tettamanzi.2015. Corporate Governance and Performance: Evidence from Italian Companies. Open Journal of Business and Management. Vol.3 No.2.
6.    Samah Anwar, Bahaa Khalil, Mohamed Seddik, Abdelhamid Eltahan, Aiman El Saadi.2022. A nonparametric statistical approach for the estimation of water quality characteristics in ungauged streams/watersheds. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2022.128174.
7.    Eriksson, L., Jaworska, J., Worth, A., Cronin, M., Mc Dowell, R.M., Gramatica, P. (2003). Methods for reliability, uncertainty assessment, and applicability evaluations of regression based and classification QSPRs. Environmental Health Perspective Journal, 111(10):1361-1375. https://doi.org/10.1289/ehp.5758.
8.    Tropsha, A., Gramatica, P., Grombar, V.K. (2003). The importance of being Earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR and Combinatorial Science, 22(1): 69-76. https://doi.org/10.1002/qsar.200390007.
9.    Hyperchem TM Release 6.03 for Windows, Molecular Modeling System, 2000.
10.    Todeschini, R., Consonni, V., Dragon, P.M. (2006). Software for the Calculation of Molecular Descriptors. Release 5.3 for windows, Milano.
11.    Todeschini, R., Ballabio, D., Consonni, V., Mauri, A., Pavan, M. (2009). MOBY DIGS software for multilinear regression analysis and variable subset selection by genetic algorithm. Release 1.1 for Windows, Milano.
12.    MINITAB, Release 13.31, Statistical Software, 2000.
13.    Estrada, E. and Molina, E. 2001. Novel Local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular desing.journal of Molecular graphics and modeling.20(1).54-64.doi 10.1016/S1093-3263(01)00100-0 PMID:11760003.
14.    Goodarzi M, Jensens, R and Vander Heyden, y. 2012.QSRR Medeling for deverse drugs using diferent feature selection Methods coupled with linear and nonlinear regression. Journal chromatography. b. Analytical Technologies int the biomedical and life sciences. 494, doi:10.1016/j.jchromb.2012.01.012 PMID.22341354.
15.    MATLAB Version 7.0.0 19920 (Release 14), The language of Technical Computiong. The Math Works. Inc. May 06(2004).
16.    Zeeman M., Aver C.M., Clements R.G., Nabholtz J.V. and Boethling R.S., 1995. U.S. EPA Regulatory Perspectives on the use of QSAR for new and existing chemical evaluations SAR QSAR, Environmental. Research, Vol. 3(3),179-201.
17.    Walker J.D., 2003. Applications of QSARs in toxicology: a US Government perspective, Journal of Molecular Structure - Theochem, Vol. 622(1-2), 167-184.
18.    Bradbury S.P., Russon C.L., Ankley G.T., Schultz T.W. and Walker J.D., 2003. Overview of data and conceptual approaches for derivation of Quantitative Structure –Activity Relationships, for ecotoxicological effects of organic chemicals Environmental Toxicology and Chemistry, Vol. 22 (8), 1789-1798.
19.    European Commission. White Paper on a strategy for a future Community Policy for Chemicals., 2001.http: // europa .eu.int / comm / enterprise / reach /.
20.    Toussaint M.W., Shedd T.R., Van der Schalie W.H. and Leather G.R., 1995. A comparison of standard acute toxicity tests with rapid screening toxicity tests. Environmental Toxicology and Chemistry Vol. 14(5), 907-915.
21.    Kubinyi H., 2002. From Narcosis to Hyperspace: The History Of QSAR, Quantitative Structure.-Activity Relationships., Vol. 21(4), 348-356.http:// e c b .j r c.i t / QSAR /.
22.    Schultz T.W., Cronin M.T.D., Walker J.D. and Aptula A.O., 2003.Quantitative structure –activity relationships (QSARs) in toxicology: a historical perspective, Journal of Molecular Structure – Theochem, Vol.622(1-2), 1-22.
23.    Posthumus R. and Slooff W., 2001. Implementation of QSARs in ecotoxicological risk assessments RIVM report. 601516003.
24.    Dearden J.C., 2002. Prediction of Environmental Toxicity and Fate Using Quantitative Structure – Activity Relationschips (QSARs), Journal of Brazilian Chemical Society, Vol 13 (6), 754- 762.
25.    Schultz T.W., Cronin M.T.D. and Netzeva T.I., 2003. The present status of QSAR in toxicology, Journal of Molecular Structure -Theochem. Vol. 622 (1- 2), 23-38.
26.    Cronin M.T.D. and Dearden J.C., 1995. QSAR in toxicology. Prediction of Aquatic Toxicity, Quantitative Structure. -Activity Relationship Vol.14(1), 1-7.
27.    Mannhold R. and van de Waterbeemdt H., 2001.Substructure and whole molecule approaches for calculating logP, Journal of Computer- Aided Molecular Design, Vol. 15(4), 337-354.
28.    Mannhold R. and Rekker R.F., 2000. The hydrophobic fragmental constant approach for calculating logP in octanol/water and aliphatic hydrocarbon/water systems. Perspectives in Drug Discovery and Design, Vol.18(1), 1-18.
29.    Benfenati E., Gini G., Piclin N., Roncaglioni A. and Vari M.R., 2003.Predicting log P of pesticides using different software, Chemosphere, Vol.53(9), 1155-1164.
30.    Klopman G., Li J.K., Wang S. and Dimayuga M., 1994.Computer Automated log P calculations based on an extended group contribution approach, Journal of Chemical. Information Computer Sciences, Vol.34(4),752-781.
31.    Kaiser K.L.E., 2003. The use of neural networks in QSARs for acute aquatic toxicological endpoints, Journal of.Molecular Structure. Theochem, Vol .622(1-2), 85-95.
32.    Papa E., Villa F. and Gramatica P., 2005. Statistically Validated QSARs Based on Theoretical Descriptors , for Modeling Aquatic Toxicity of Organic Chemicals in Pemiphales promelas (Fathead Minnow ), Journal of Chemical Information and Modeling, Vol.45(5), 1256-1266.
33.    Roy K. and Ghosh G., 2009.QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Chemosphere, Vol. 77(7), 999-1009.
34.    Zhao Y.H., Zhang X.J., WEN Y., Sun F.T., Guo Z., Qin W.C., Qin H.W.,Xu J.L., Sheng L.X. and Abraham M.H., 2010.Toxicity of organic chemicals to Tetrahymena pyriformis: Effect of polarity and ionization on toxicity. Chemosphere, Vol. 79(1), 72-77.
35.    Roy K. and Das R.N., 2010.QSTR with extended topochemical atom (ETA) indices.14. QSAR modeling of toxicity of aromatic aldehydes to Tetrahymena pyriformis. Journal of Hazardous Materials, Vol. 183(1-3), 913-922.
36.    Bouaoune A., Lourici L., Haddag H. and Messadi D.,2012. Inhibition of Microbial Growth by anilines: A QSAR study, Journal of Environmental Science and Engineering., A1, Vol. 1(5A), 663-671.
37.    Hill D.L., 1972. The Biochemistry and Physiology of Tetrahymena. Academic Press, New York and London,230p.
38.    Schultz T.W., Lin D.T., Wilke T.S. and Arnold L.M.,1990. Quantitative structure-activity relationsh
39.    Tiffany Machabert .2014 "Modèles en très grande dimension avec des outliers. Théorie, simulations, applications" paris.
40.    Soner Çankaya, Samet Hasan Abacı.2015. A Comparative Study of Some Estimation Methods in Simple Linear Regression Model for Different Sample Sizes in Presence of Outliers. Turkish Journal of Agricultue Food Science and Technology. ISSN: 2148-127X.
41.    Jiehan Zhu and Ping Jing.2010. The Analysis of Bootstrap Method in Linear Regression Effect. Journal of Mathematics Research Vol. 2, No. 4.
42.    Yinbo Li and Gonzalo R. Arce.2004. AMaximum Likelihood Approach to Least Absolute Deviation Regression. EURASIP Journal on Applied Signal Processing. 12, 1762–1769.
43.    Gonzalez, M.P, Teran, C., Saiz-Urra.I and Tcijcira.M.2008. Variable selection Methods in QSAR overview. currrent Topics in medicinal chemistry.8(18), 16061627.doi:102174/156802608786552PMID:19075770.
44.    Roman Kaliszan, Tomasz Ba̧czek, Adam Buciński, Bogusław Buszewski, Małgorzata Sztupecka. 2003. Prediction of gradient retention from the solvent strength (LSS) model, quantitative structure-retention relationships (QSRR), and artificial neural networks (ANN). Journal of Separation Science. Volume 26, Issue 3-4.
45.    Berlin, G.B. 1982 The Pyrazine; Wiley-Interscience: New York.
46.    Pynnönen, Seppo and Timo Salmi (1994). A Report on Least Absolute Deviation Regression with Ordinary Linear Programming. Finnish Journal of Business Economics 43:1, 33-49.
47.    Dodge, Y. et Valentin Rousson (2004). Analyses de regression appliquée. paris.
48.    Faria, S. and Melfi, G. (2006). Lad regression and nonparametric methods for detecting outliers and leverage points. Student, 5 :265– 272.
49.    Gabriela Ciuperca. (2009). Estimation robuste dans un modè paramétrique avec rupture. Bordeaux.
50.    Gilbert Saporta. (2012). Régression robuste.
51.    Ndèye Niang- Gilbert Saporta. (2014).Régression robuste Régression non-paramétrique.
52.    Dr. Nadia H. AL – Noor and Asmaa A. Mohammad. 2013. Model of Robust Regression with Parametric and Nonparametric Methods. Journal of Mathematical Theory and Modeling Vol.3, No.5.
53.    Dodge, Y. (2004). Statistique: Dictionnaire encyclopédique.
54.    Dodge, Y. and Jureckova, J. (2000). Adaptive Regression. Springer-Verlag New York.
55.    Nornadiah, Mohd Razali.Yab Bee,Yah .2011. Power Comparaisons of shapiro-wilk, Kolmogorov- smornov, lillieffors and Anderson-Darling tests, Journal of statistique Modelling and analytics .vol 2 No 1:21-33 .


Recomonded Articles:

Author(s): Satyajit Dutta, Sagar Banik, Sovan Sutradhar, Sangya Dubey, Ira Sharma

DOI:         Access: Open Access Read More

Author(s): Khadidja Amirat, Nadia Ziani, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia

DOI: 10.52711/0974-4150.2023.00011         Access: Open Access Read More

Author(s): Fatiha Mebarki, Souhaila Meneceur, Abderrhmane Bouafia

DOI: 10.52711/0974-4150.2022.00078         Access: Open Access Read More

Author(s): Fatiha Mebarki, Souhaila Meneceur, Nadia Ziani, Khadidja Amirat, Abderrhmane Bouafia

DOI: 10.52711/0974-4150.2023.00031         Access: Open Access Read More

Author(s): Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia

DOI: 10.52711/0974-4150.2023.00001         Access: Open Access Read More

Author(s): Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Abderrhmane Bouafia

DOI: 10.52711/0974-4150.2023.00057         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags