Author(s):
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Abderrhmane Bouafia
Email(s):
abdelrahmanebouafia@gmail.com
DOI:
10.52711/0974-4150.2023.00057
Address:
Nadia Ziani1,4, Khadidja Amirat2,4, Souhaila Meneceur3,4, Abderrhmane Bouafia3*
1Faculty of Science, Chemistry Department Badji Mokhtar University Annaba, Annaba, Algeria.
2Faculty of Science, Department of Chemistry University of Sétif 1 - Ferhat Abbas, El Bez, Setif 19000.
3Department of Process Engineering and Petrochemistry, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria.
4Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued El-Oued, Algeria.
*Corresponding Author
Published In:
Volume - 16,
Issue - 5,
Year - 2023
ABSTRACT:
A structure/retention indices relationship was searched for 59 PAHs while promoting the simple linear regression by genetic algorithm MOBIDYGS software, the structural parameters being calculated with the software Spartan and DRAGON. Among about a hundred of one-regression models gotten, we selected the one that present best values of the prediction parameter (Q2) and of the determination coefficient (R2). The robustness of obtaining model were illustrated using different techniques: leave-many-out, external-validation, randomization test, applicability domain.
Cite this article:
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Abderrhmane Bouafia. Development of QSRR model of a set of Polycyclic Aromatic Hydrocarbons (PAHs) using simple regression analysis in silico. Asian Journal of Research in Chemistry. 2023; 16(5):358-2. doi: 10.52711/0974-4150.2023.00057
Cite(Electronic):
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Abderrhmane Bouafia. Development of QSRR model of a set of Polycyclic Aromatic Hydrocarbons (PAHs) using simple regression analysis in silico. Asian Journal of Research in Chemistry. 2023; 16(5):358-2. doi: 10.52711/0974-4150.2023.00057 Available on: https://ajrconline.org/AbstractView.aspx?PID=2023-16-5-7
REFERENCES:
1. Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: Environmental Pollution and Bioremediation. TRENDS in Biotechnology. 2002; 20(6):243-8.
2. Hylton JH. Aboriginal Self-Government in Canada: Current Trends and Issues. Purich's Aboriginal Issues Series: ERIC. 1994.
3. Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. International Biodeterioration and Biodegradation. 2000; 45(1-2):57-88.
4. Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science. 2000; 163(3): 229-48.
5. Hill AJ, Ghoshal S. Micellar solubilization of naphthalene and phenanthrene from nonaqueous-phase liquids. Environmental science & technology. 2002; 36(18):3901-7.
6. Li JL, Chen BH. Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chemical Engineering Science. 2002; 57(14):2825-35.
7. Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology. 1992; 26(7):1278-84.
8. Rababah A, Matsuzawa S. Treatment system for solid matrix contaminated with fluoranthene. II––Recirculating photodegradation technique. Chemosphere. 2002; 46(1):49-57.
9. Gabet S. Remobilisation d'Hydrocarbures Aromatiques Polycycliques (HAP) présents dans les sols contaminés à l'aide d'un tensioactif d'origine biologique. 2004.
10. Bernal-Martinez A. Elimination des hydrocarbures aromatiques polycycliques présents dans les boues d'épuration par couplage ozonation-digestion anaérobie. 2005.
11. dos Santos Duarte C, dos Santos Marques A, Takahata Y. QSAR study of quinoline metanols with antimalarial activity against Plasmodium falciparum.
12. Verma MP, Gupta S. Software Development for Nursing: Role of Nursing Informatics. Int J Nur Edu and Research. 2017; 5(2):203-7.
13. Galande AK, Rohane SH. Insilico Molecular docking analysis in Maestro Software. Asian Journal of Research in Chemistry. 2021; 14(1):97-100.
14. Ganatra SH, Patle MR, Bhagat GK. Studies of Quantitative Structure-Activity Relationship (QSAR) of Hydantoin Based Active Anti-Cancer Drugs. Tc. 2011; 1(2.124):8-9351.
15. Swathi N, Subrahmanyam CVS, Satyanarayana K. Synthesis and Quantitative Structure-Antioxidant Activity Relationship Analysis of Thiazolidine-2, 4-dione Analogues. Asian J Research Chem. 2015; 8(1):21-6.
16. Otuokere IE, Amaku FJ. Computer-aided drug design of an anti-angiogenic and immunomodulatory agent,-(2, 4-dioxocyclohexyl)-1H-isoindole-1, 3 (2H)-dione (thalidomide). Asian Journal of Research in Chemistry. 2015; 8(9):601-5.
17. Mathew B, Mathew GE, Shafeer VP, Musthafa CM, Femina P. A Green Route Approach of α, β-Unsaturated Ketone Having a Benzimidazole Tail and Their Virtual Screening on the Molecular Descriptors for Predicting the CNS-Drug likeness. Asian Journal of Research in Chemistry. 2012; 5(1):65-8.
18. Otuokere IE, Alisa CO. Computational Study on Molecular Orbital’s, Excited State Properties and Geometry Optimization of Anti-benign Prostatic Hyperplasia Drug, N-(1, 1-dimethylethyl)-3-oxo-(5α, 17β)-4-azaandrost-1-ene-17-carboxamide (Finasteride). Asian Journal of Research in Pharmaceutical Science. 2014; 4(4): 169-73.
19. Otuokere IE, Amaku FJ. Conformation Analysis and Self-Consistent Field Energy of Immune Response Modifier, 1-(2-methylpropyl)-1H-imidazo [4, 5] quinolin-4-amine (Imiquimod). Asian Journal of Research in Pharmaceutical Science. 2015; 5(3):1-6.
20. Otuokere IE, Amaku FJ, Alisa CO. In silico geometry optimization, excited–state properties of (2E)-N-Hydroxy-3-[3-(Phenylsulfamoyl) Phenyl] prop-2-enamide (Belinostat) and its molecular docking studies with Ebola Virus glycoprotein. Asian Journal of Pharmaceutical Research. 2015; 5(3):131-7.
21. Yadav M, Yadav VK. A Study of Challenges and Practices Related to HRM in Software Industry. Asian Journal of Management. 2017; 8(4):1233-6.
22. Gujjar PJ, Manjunatha T. Testing of Dupont model for software and Training services Companies in India. Asian Journal of Management. 2021; 12(2):169-80.
23. Kang J, Cao C, Li Z. Quantitative structure–retention relationship studies for predicting the gas chromatography retention indices of polycyclic aromatic hydrocarbons: Quasi-length of carbon chain and pseudo-conjugated system surface. Journal of Chromatography A. 1998; 799(1-2):361-7.
24. Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969; 11(1):137-48.
25. Zakharian TY, Coon SR. Evaluation of Spartan semi-empirical molecular modeling software for calculations of molecules on surfaces: CO adsorption on Ni (111). Computers & Chemistry. 2001; 25(2):135-44.
26. Todeschini R, Consonni V, Mauri A, Pavan M. DRAGON-Software for the calculation of molecular descriptors. Web Version. 2004; 3.
27. Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. Journal of Chemometrics. 1992; 6(5):267-81.
28. Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M. MOBYDIGS, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm. Release 1.1 for windows. Milano; 2009.
29. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science. 2003; 22(1):69-77.
30. Wu W, Walczak B, Massart DL, Heuerding S, Erni F, Last IR, et al. Artificial neural networks in classification of NIR spectral data: design of the training set. Chemometrics and Intelligent Laboratory Systems. 1996; 33(1):35-46.
31. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environmental Health Perspectives. 2003; 111(10):1361-75.