ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): J. Margaret Marie, S. Santhi, R. Puvanakrishnan, R. Nanthini

Email(s): margaretxavier@gmail.com

DOI: Not Available

Address: J. Margaret Marie*1,3, S. Santhi2,4, R. Puvanakrishnan3, and R. Nanthini4
1Department of Chemistry, Women’s Christian College, Chennai, India.
2Department of Chemistry, Bharathi Women’s College, Chennai, India.
3Department of Biotechnology, Central Leather Research Institute, Chennai, India.
4PG and Research Department of Chemistry, Pachaiyappa’s College, Chennai, India.
Corresponding author

Published In:   Volume - 5,      Issue - 1,     Year - 2012


ABSTRACT:
Synthetic bioelastomers are a class of biomaterials that are extensively used for biomedical applications. A potential biomaterial is expected to be elastic and flexible, so that it could mimic the mechanical properties of natural tissues. In this paper, we report the studies on two elastomers: Poly(1,12-dodecanediol citrate-co-1,12-dodecanediol itaconate) [p(DDCI)] and Poly(1,4-cyclohexanedimethanol citrate-co-1,4-cyclohexanedimethanol itaconate) [p(CHCI)], containing multifunctional non-toxic monomers; citric acid (CA), 1,12-dodecanediol (DD), 1,4-cyclohexanedimethanol (CHDM) and itaconic acid (IA). Citric acid can undergo polycondensation in the absence of toxic catalyst. Also, its multifunctionality favours crosslinking of polymeric networks during thermal curing conditions. The polyester was characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and differential scanning calorimetry analysis. The Young’s modulus, UTS, % elongation and swelling experiments revealed that the mechanical and swelling characteristics of the polyesters revealed that it is can be fabricated as per the requirements of its biological applications. The solubility tests revealed that the pre-polymers were soluble in common organic solvents therefore facilitating processing ability for scaffold fabrication. The insolubility of post-polymerised polyester confirmed their elastomeric nature and was further evidenced by the glass transition temperature which was well below the body temperature. In vitro degradation studies were performed on the polyester samples. It was observed that the Young’s modulus and crosslink density were higher for [p(DDCI)] while the degradation rates of [p(CHCI)] was higher. This was attributed to the structural difference between the two diols and the degree of crosslinking between polymeric chains. As all the monomers used in the material have previously been utilized in other biomaterials the synthesized elastomer were expected to be excellent candidates as future biomaterials.


Cite this article:
J. Margaret Marie, S. Santhi, R. Puvanakrishnan, R. Nanthini. Synthesis and Degradation of Poly (Diol Citric Itaconate) Polyester Elastomers. Asian J. Research Chem. 5(1): January 2012; Page 136-139.


Recomonded Articles:

Author(s): Gullipilli Sandhya, R. Ravichandra Babu

DOI: 10.5958/0974-4150.2018.00115.3         Access: Open Access Read More

Author(s): Virupakshi Prabhakar, Kondra Sudhakar Babu, L.K. Ravindranath, M. Sahanoor Basha, J. Latha

DOI: 10.5958/0974-4150.2017.00012.8         Access: Open Access Read More

Author(s): Ram C. Senwar, Krishna K. Rathore, Anita Mehta

DOI: 10.5958/0974-4150.2017.00022.0         Access: Open Access Read More

Author(s): Arun Kumar, Vinita Gupta, Sanchita Singh, Y.K. Gupta

DOI: 10.5958/0974-4150.2017.00038.4         Access: Open Access Read More

Author(s): Bulusu Lakshmi Sushma1, Gutta Madhusudhan, Anireddy Jayashree

DOI: 10.5958/0974-4150.2017.00014.1         Access: Open Access Read More

Author(s): Vatchavai Bhaskara Raju, Bonthu Mohan Gandhi, Kamatham Srinivas Sumanth, Kolli Srinivas, Tupakula N Venkata Lakshmi Neeraja

DOI: 10.5958/0974-4150.2017.00030.X         Access: Open Access Read More

Author(s): Tauseef Shaikh, Atar Mujum , Khan Wasimuzzama, Rukhsana A Rub

DOI:         Access: Open Access Read More

Author(s): Y. Padmavathi, Akari Anjali, Nayaka Raghavendra Babu, P Ravi Kumar

DOI: 10.5958/0974-4150.2017.00064.5         Access: Open Access Read More

Author(s): Virupakshi Prabhakar, Kondra Sudhakar Babu, L.K. Ravindranath, J. Latha, B.Venkateswarlu

DOI: 10.5958/0974-4150.2017.00011.6         Access: Open Access Read More

Author(s): Prathima Patil, S.P. Sethy, T. Sameena, K. Shailaja

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags