Author(s):
J. R. Pitrubhakta, Tushar A. Kere, Shilpa S. Shinde, Suyog A. Soni, V. R. Jadhav
Email(s):
mevikramjadhav@gmail.com
DOI:
10.5958/0974-4150.2020.00068.1
Address:
J. R. Pitrubhakta1, Tushar A. Kere2, Shilpa S. Shinde3, Suyog A. Soni1, V. R. Jadhav4
1K. K. Wagh ACS and CS College Pimplas Ramache, 422301, Niphad, Nashik MS (India).
2K. K. Wagh ACS College Saraswatinagar, Nashik-422003, Nashik, MS (India),.
3K. K. Wagh ACS and CS College Chandori, 422201, Niphad, Nashik, MS (India).
4K. K. Wagh ACS College Pimpalgaon (B), 422209, Niphad, Nashik, MS (India).
*Corresponding Author
Published In:
Volume - 13,
Issue - 5,
Year - 2020
ABSTRACT:
In this study, the hydrothermal synthesis, electrical properties, and gas sensing performance of TiO2 thick film were studied. The thick film was prepared by using hydrothermal and screen painting technology and the characterization were done by using ultraviolet spectroscopy (UV) and scanning electron microscopy (SEM). The gas sensitivity and electrical properties of the TiO2 thick film was prepared and measures, it gives greatest amount of gas response for liquified petroleum gas (LPG) and hydrogen Sulphide (H2S) and the response is increases along hydrothermal synthesis time.
Cite this article:
J. R. Pitrubhakta, Tushar A. Kere, Shilpa S. Shinde, Suyog A. Soni, V. R. Jadhav. Synthesis, Characterization, and Gas Sensing performance of Nanometer TiO2 thick film by Hydrothermal method. Asian J. Research Chem. 2020; 13(5):360-364. doi: 10.5958/0974-4150.2020.00068.1
Cite(Electronic):
J. R. Pitrubhakta, Tushar A. Kere, Shilpa S. Shinde, Suyog A. Soni, V. R. Jadhav. Synthesis, Characterization, and Gas Sensing performance of Nanometer TiO2 thick film by Hydrothermal method. Asian J. Research Chem. 2020; 13(5):360-364. doi: 10.5958/0974-4150.2020.00068.1 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-5-10
REFERENCES:
1. A.M. More, J. L. Gunjakar, C. D. Lokhande, Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films Sensors and Actuators: B, 129, 2008, pp. 671–677.
2. Baraton, M. I., and Merhari, L. (2004). Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties. Journal of the European Ceramic Society, 24(6), 1399-1404.
3. Benmami, M., Chhor, K., and Kanaev, A. V. (2006). High photocatalytic activity of monolayer nanocoatings prepared from non-crystalline titanium oxide sol nanoparticles. Chemical Physics Letters, 422(4-6), 552-557.
4. Fujishima, A., Kohayakawa, K., and Honda, K. (1975). Hydrogen production under sunlight with an electrochemical photocell. JElS, 122, 1487-1489.
5. Grover, V. A. (2011). Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects. The University of Texas at San Antonio.
6. Ho, W., Jimmy, C. Y., and Lee, S. (2006). Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid-State chemistry, 179(4), 1171-1176.
7. Jesline, A., John, N. P., Narayanan, P. M., Vani, C., and Murugan, S. (2015). Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Applied Nanoscience, 5(2), 157-162.
8. Joshi, J., Dandia, A., and Kumari, S. (2017). Titanium Oxide Nanoparticles as Valuable Catalyst in Organic Synthesis: A Review. Mini-Reviews in Organic Chemistry, 14(3), 227-236.
9. Jadhav, V. R., Nair, S. G., Rayate, M. M., and More, B. A. (2019). Mathematical Treatment to Understanding the Concentration Terms. International Journal of Research and Review, 6(1), 172-175.
10. Nemade, K. R., Barde, R. V., and Waghuley, S. A. (2016). Liquefied petroleum gas sensing by Al-doped TiO2 nanoparticles synthesized by chemical and solid-state diffusion routes. Journal of Taibah University for Science, 10(3), 345-351.
11. Oh, H. J., Lee, J. H., Jeong, Y., Kim, Y. J., and Chi, C. S. (2005). Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surface and Coatings Technology, 198(1-3), 247-252.
12. Paek, M. J., Kim, T. W., and Hwang, S. J. (2008). Effects of hydronium intercalation and cation substitution on the photocatalytic performance of layered titanium oxide. Journal of Physics and Chemistry of Solids, 69(5-6), 1444-1446.
13. Rincon, M. E., Gomez-Daza, O., Corripio, C., and Orihuela, A. (2001). Sensitization of screen-printed and spray-painted TiO2 coatings by chemically deposited CdSe thin films. Thin Solid Films, 389(1-2), 91-98.
14. Radhakrishnan, S. R., and Sri, S. S. (2011). Natural Photosensitizers on TiO2 films for Dye Sensitized Solar Cells. Asian Journal of Research in Chemistry, 4(4), 621-625.
15. Soni, S. A., Jadhav, V. R., and Kere, T. A. Chitkara Open Access Journals-Blog.
16. Savale, P. A. (2018). Comparative Study of Various Chemical Deposition Methods for Synthesis of Thin Films: A Review. Asian Journal of Research in Chemistry, 11(1), 195-205.
17. Srinivasan, N., and Kumar, S. V. (2018). Zirconia as An Alternative to Titanium for Oral Implant-A Review. Asian Journal of Research in Chemistry, 11(6), 887-892.
18. Soni, S. A., Jadhav, V. R., and Kere, T. A. (2018). Effect of Copper Substitution, Calcination Temperature, and Photo-sensitizers on Photocatalytic Activity of Cu0. 05 Zn0. 95O. Journal of Chemistry, Environmental Sciences and its Applications, 5(1), 1-9.
19. Soni, S. A., Jadhav, V. R., and Kere, T. A. J. Chem. En. Sci. A.
20. Mei, A., Wang, X. L., Feng, Y. C., Zhao, S. J., Li, G. J., Geng, H. X., ... and Nan, C. W. (2008). Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ionics, 179(39), 2255-2259.
21. Nair, S. G., and Jadhav, V. R. (2020). Biosynthesis of Silver nanoparticles and comparing its Antifungal property with Ethanolic extract of Ixora coccinea plant. Asian J. Research Chem. 13(3), 198-202.
22. Nair, S. G., More, T. S., Jadhav, V. R., Rayate, M. M., and More, B. A. A Procedure Employing for Redox Titration: Balancing the Redox Chemical Equation in Acidic or Basic Medium.
23. Waghuley, K. N. R. B. S. (2015). Liquefied petroleum gas sensing by Al doped TiO2. relation (Eq. 2), 2(2), 2.
24. Yadav, B. C., Singh, S., and Yadav, T. P. (2015). Titania prepared by ball milling: its characterization and application as liquefied petroleum gas sensor. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(4), 487-494.
25. Yawale, S. P., Yawale, S. S., and Lamdhade, G. T. (2007). Tin oxide and zinc oxide based doped humidity sensors. Sensors and Actuators A: Physical, 135(2), 388-393.