Author(s):
Tuly Paul, Faruk Hossen, Kudrat-E-Zahan, Masuqul Haque, Saddam Hossain, Rausan Zamir, Ali Asraf
Email(s):
asraf.chem@ru.ac.bd
DOI:
10.5958/0974-4150.2020.00052.8
Address:
Tuly Paul1, Md. Faruk Hossen1, Md. Kudrat-E-Zahan1, Md. Masuqul Haque1, Md. Saddam Hossain2, Rausan Zamir1, Md. Ali Asraf1*
1Department of Chemistry, Rajshahi University, Rajshahi - 6205, Bangladesh.
2Department of Chemistry, Begum Rokeya University, Rangpur, Bangladesh.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2020
ABSTRACT:
Cu(II), Co(II), Ni(II) and Mn(II) complexes with the Schiff base (SB) derived from the condensation of 2-aminophenol with salicylaldehyde were synthesized. The complexes were characterized by elemental analyses, molar conductivity, magnetic moment, FT-IR, UV-vis and ESI-MS spectrometry as well as thermal analyses. The conductivity data of the complexes confirmed their non-electrolytic nature. Square-planar geometry was suggested for Cu(II) and Ni(II) complex and tetrahedral structure suggested for Co(II) and Mn(II) complex. The prepared complexes and ligand were screened in-vitro for their antimicrobial activity against gram-positive bacteria (Bacillus cereus) and gram-negative bacteria (Escherichia coli.) In all the cases, metallation increased the antimicrobial activity compared with the free ligand.
Cite this article:
Tuly Paul, Faruk Hossen, Kudrat-E-Zahan, Masuqul Haque, Saddam Hossain, Rausan Zamir, Ali Asraf. Schiff base metal complexes: Synthesis, Characterization, Thermal Analysis and Antibacterial Activity. Asian J. Research Chem. 2020; 13(4):265-274. doi: 10.5958/0974-4150.2020.00052.8
Cite(Electronic):
Tuly Paul, Faruk Hossen, Kudrat-E-Zahan, Masuqul Haque, Saddam Hossain, Rausan Zamir, Ali Asraf. Schiff base metal complexes: Synthesis, Characterization, Thermal Analysis and Antibacterial Activity. Asian J. Research Chem. 2020; 13(4):265-274. doi: 10.5958/0974-4150.2020.00052.8 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-4-6
REFERENCES:
1. Da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V.; de Fátima, Â., Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research.2011, 2, 1-8.
2. Katwal, R.; Kaur, H.; Kapur, B. K., Applications of copper—Schiff’s base complexes: a review. Scientfic Review and Chemical Communications.2013, 3, 1-15.
3. Mahmud, T., Synthesis and characterization of the amino acid Schiff bases and their complexes with copper (II). 2010.
4. Bader, N. R., Applications of Schiff’s Bases Chelates in Quantitative Analysis A Review. Rasayan Journal of Chemistry.2010, 3, 660-70.
5. Maher, K.; Mohammed, S., Metal complexes of Schiff base derived from salicylaldehyde-A review. International Journal of Current Research and Review.2015, 7, 6.
6. Al Zoubi, W., Biological activities of Schiff bases and their complexes: a review of recent works. International Journal of Organic Chemistry.2013, 2013.
7. Asraf, M. A.; Rahman, M. M.; Kabiraz, D.; Ansary, R. H.; Hossen, M. F.; Haque, M. F.; Zakaria, C., Structural Elucidation, 3D Molecular Modeling and Antibacterial Activity of Ni (II), Co (II), Cu (II) and Mn (II) Complexes Containing Salophen Ligand. Asian Journal of Applied Chemistry Research.2019, 1-15.
8. Sarker, D.; Karim, M. R.; Haque, M. M.; Zamir, R.; Asraf, M. A., Copper (II) Complex of Salicylaldehyde Semicarbazone: Synthesis, Characterization and Antibacterial Activity. Asian Journal of Chemical Sciences.2019, 1-8.
9. Sarker, D.; Reza, M. Y.; Haque, M. M.; Zamir, R.; Asraf, M. A., Synthesis, Characterization, Antibacterial and Thermal Studies of Cu (II) Complex of Thiophene-2-aldehyde Semicarbazone. Asian Journal of Applied Chemistry Research.2019, 1-10.
10. Asraf, M. A.; Ezugwu, C. I.; Zakaria, C.; Verpoort, F., Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochemical and Photobiological Sciences.2019, 18, 2782-2791.
11. Asraf, M. A.; Younus, H. A.; Ezugwu, C. I.; Mehta, A.; Verpoort, F., Cobalt salophen complexes for light-driven water oxidation. Catalysis Science and Technology.2016, 6, 4271-4282.
12. Asraf, M. A.; Younus, H. A.; Yusubov, M.; Verpoort, F., Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous? Catalysis Science and Technology.2015, 5, 4901-4925.
13. Prakash, A.; Adhikari, D., Application of Schiff bases and their metal complexes-A Review. International Journalof Chem.Tech. Research.2011, 3, 1891-1896.
14. Goel, P.; Kumar, D.; Chandra, S., Schiff’s Base Ligands and their transition metal complexes as Antimicrobial agents. Journal of Chemical, Biological and Physical Sciences,2014, 4, 1946-1964.
15. Schwarzenbach, G.; Flaschka, H. A., Complexometric titrations [by] G. Schwarzenbach and H. Flaschka. Methuen: London, 1969.
16. Erdey, L. s., Gravimetric Analysis. Macmillan: New York, 1963.
17. Elzahany, E. A.; Hegab, K H.; Khalil, S. K.; Youssef, N. S., Synthesis, characterization and biological activity of some transition metal complexes with schiff bases derived from 2-formylindole, salicyladehyde and N-amino rhodanine. Australian Journal of Basic and Applied Sciences.2008, 2, 210-220.
18. Sobola, A. O.; Watkins, G. M., Antimicrobial activity and Cu (II) complexes of Schiff bases derived from ortho-aminophenol and salicylaldehyde derivatives. Journal of Chemical and Pharmaceutical Research.2013, 5, 147-154.
19. Afsan, F.; Dalia, S. A.; Hossain, S.; Sarker, S., Synthesis, Spectral and Thermal Characterization of Selected Metal Complexes Containing Schiff Base Ligands with Antimicrobial Activities. Asian Journal of Chemical Sciences.2018, 1-19.
20. Arun, V.; Sridevi, N.; Robinson, P.; Manju, S.; Yusuff, K. M., Ni (II) and Ru (II) Schiff base complexes as catalysts for the reduction of benzene. Journal of Molecular Catalysis A: Chemical.2009, 304, 191-198.
21. Refat, M. S., Complexes of uranyl (II), vanadyl (II) and zirconyl (II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity. Journal of Molecular Structure.2007, 842, 24-37.
22. Day, M. C., Theoretical Inorganic Chemistry. 1969.
23. Rajbhoj, S.; Chondhekar, T., Systematic Experimental Physical Chemistry. Anjali Publication, Aurangabad.2000, 256.
24. Figgis, B., Magnetic properties of spin-free transition series complexes. Nature.1958, 182, 1568-1570.
25. Lewis, J.; Wilkins, R. G., Modern Coordination Chemistry: Principles and Methods. Interscience: New York; London, 1960.
26. Adamson, A. W., Advanced Inorganic Chemistry. By F. A. Cotton and G. Wilkinson. Inorganic Chemistry.1963, 2, 665-665.
27. Nicholls, D., Magnetic Properties of Transition-metal Complexes. In Complexes and First-Row Transition Elements, Macmillan Education UK: London, 1974; pp 100-111.
28. Perkampus, H. H., LJ Bellamy: The Infrared Spectra of Complex Molecules, Vol. 1, 3. Auflage, Chapman and Hall Ltd., London 1975, 433 Seiten, 32 Abb., 22 Tabellen, Preis:£ 8.—. Berichte der Bunsengesellschaft für physikalische Chemie.1976, 80, 99-100.
29. Kavitha, N.; Lakshmi, P. A., Synthesis, characterization and thermogravimetric analysis of Co (II), Ni (II), Cu (II) and Zn (II) complexes supported by ONNO tetradentate Schiff base ligand derived from hydrazino benzoxazine. Journal of Saudi Chemical Society.2017, 21, S457-S466.
30. İspir, E.; Kurtoğlu, M.; Purtaş, F.; Serin, S., Synthesis and antimicrobial activity of new Schiff bases having the–SiOR group (R= CH 3 or CH 2 CH 3), and their transition metal complexes. Transition Metal Chemistry.2005, 30, 1042-1047.
31. Odabaşoğlu, M.; Albayrak, Ç.; Özkanca, R.; Aykan, F. Z.; Lonecke, P., Some polyhydroxy azo–azomethine derivatives of salicylaldehyde: Synthesis, characterization, spectroscopic, molecular structure and antimicrobial activity studies. Journal of Molecular Structure.2007, 840, 71-89.
32. Gupta, K.; Sutar, A. K., Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews.2008, 252, 1420-1450.
33. Nakamoto, K., Infrared and R aman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy.2006.
34. Lever, A. B. P., Inorganic Electronic Spectroscopy. 1968.
35. Blasco, S.; Burguete, M. I.; Clares, M. P.; García-España, E.; Escorihuela, J.; Luis, S. V., Coordination of Cu2+ Ions to C 2 Symmetric Pseudopeptides Derived from Valine. Inorganic Chemistry.2010, 49, 7841-7852.
36. Hasanvand, F.; Hoseinzadeh, A.; Zolgharnein, J.; Amani, S., Synthesis and characterization of two acetato-bridged dinuclear copper (II) complexes with 4-bromo-2-((4 or 6-methylpyridin-2-ylimino) methyl) phenol as ligand. Journal of Coordination Chemistry.2010, 63, 346-352.
37. Komaei, S. A.; Van Albada, G. A.; Reedijk, J., Synthesis, spectroscopic and magnetic properties of methoxo-bridged copper (II) complexes with 2-amino-4-methylpyridine as the ligand. Transition Metal Chemistry.1999, 24, 104-107.
38. Lever, A. P., Inorganic Electronic Spectroscopy. Studies in Physical and Theoretical Chemistry.1984, 33.
39. Chapeaurouge, A.; Bigler, L.; Schäifer, A.; Bienz, S., Correlation of stereoselectivity and ion response in electrospray mass-spectrometry. electrospray ionization-mass spectrometry as a tool to predict chemical behavior? Journal of the American Society for Mass Spectrometry.1995, 6, 207-211.
40. Ross, A. R.; Ikonomou, M. G.; Thompson, J. J.; Orians, K. J., Determination of dissolved metal species by electrospray ionization mass spectrometry. Analytical Chemistry.1998, 70, 2225-2235.
41. Badea, M.; Emandi, A.; Marinescu, D.; Cristurean, E.; Olar, R.; Braileanu, A.; Budrugeac, P.; Segal, E., Thermal stability of some azo-derivatives and their complexes. Journal of Thermal Analysis and Calorimetry.2003, 72, 525-531.
42. Aziz, A. A. A.; Salem, A. N. M.; Sayed, M. A.; Aboaly, M. M., Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M (II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2). Journal of Molecular Structure.2012, 1010, 130-138.
43. Aly, F.; Abu-El-Wafa, S.; Issa, R.; El-Sayed, F., On the formation of mononuclear and binuclear complexes of pentadentate N4O2 schiff base ligands with Co (II), Ni (II) and Cu (II) ions: TGA, spectral and conductance studies. Thermochimica Acta.1988, 126, 235-244.
44. Alghool, S., Mononuclear complexes based on reduced Schiff base derived from L-methionine, synthesis, characterization, thermal and in vitro antimicrobial studies. Journal of Thermal Analysis and Calorimetry.2015, 121, 1309-1319.
45. Thimmaiah, K.; Lloyd, W.; Chandrappa, G., Stereochemistry and fungitoxicity of complexes of p-anisaldehydethiosemicarbazone with Mn (II), Fe (II), Co (II) and Ni (II). Inorganica Chimica Acta.1985, 106, 81-83.
46. Collins, C.; Lyne, P., Biochemical methods. Collins CH, Lyne PM, Microbiological methods. Butterworths, London 1976, 167-178.
47. Kulkarni, A.; Avaji, P. G.; Bagihalli, G. B.; Patil, S. A.; Badami, P. S., Synthesis, spectral, electrochemical and biological studies of Co (II), Ni (II) and Cu (II) complexes with Schiff bases of 8-formyl-7-hydroxy-4-methyl coumarin. Journal of Coordination Chemistry.2009, 62, 481-492.
48. Malik, S.; Ghosh, S.; Mitu, L., Complexes of some 3d-metals with a Schiff base derived from 5-acetamido-1, 3, 4-thiadiazole-2-sulphonamide and their biological activity. Journal of the Serbian Chemical Society.2011, 76, 1387-1394.