Author(s):
Ashok Kumar, Pawan Kumar, Sunil Chopra, Anil Sindhu
Email(s):
akumarrksd@gmail.com
DOI:
10.52711/0974-4150.2023.00063
Address:
Ashok Kumar1, Pawan Kumar2, Sunil Chopra2, Anil Sindhu2
1Department of Chemistry, RKSD College, Kaithal -136027, Haryana.
2Department of Biotechnology, DCR University of Science and Technology, Murthal -131039, Haryana.
*Corresponding Author
Published In:
Volume - 16,
Issue - 5,
Year - 2023
ABSTRACT:
The biopolymer chitosan is a biodegradable, biocompatible polymer that has been scientifically proven to be an efficient organic compound for the adsorption of heavy metals from a variety of industrial wastewater. Heavy metals are toxic and can cause a variety of harmful health effects, even in low concentrations. Therefore, it is important to remove them from the wastewater to ensure the water is safe for consumption and other uses. Chitosan is a superior adsorbent because it contains functional groups like hydroxyl and amino. Nano-chitosan can be fabricated using various methods but modern nanotechnology research focuses on developing highly efficient and cost-effective green technology. The remarkable physicochemical features of nano-chitosan make it suited for usage in enhancing the durability and washability of textile supplies as well as giving them antibacterial capabilities.
Cite this article:
Ashok Kumar, Pawan Kumar, Sunil Chopra, Anil Sindhu. Application of Chitosan Nanoparticles in the Adsorption of Heavy Metals from Wastewater: A Concise Review. Asian Journal of Research in Chemistry. 2023; 16(5):389-3. doi: 10.52711/0974-4150.2023.00063
Cite(Electronic):
Ashok Kumar, Pawan Kumar, Sunil Chopra, Anil Sindhu. Application of Chitosan Nanoparticles in the Adsorption of Heavy Metals from Wastewater: A Concise Review. Asian Journal of Research in Chemistry. 2023; 16(5):389-3. doi: 10.52711/0974-4150.2023.00063 Available on: https://ajrconline.org/AbstractView.aspx?PID=2023-16-5-13
REFERENCES:
1 Englande A J. Krenkel P. Shamas J B T R M. in E S. and E S. 2015. Wastewater Treatment &Water Reclamation. Elsevier. Englande A J. Krenkel P. Shamas J B T-R M in E S and E S . Wastewater Treatment & Water Reclamation. Elsevier. 2015: https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09508-7
2 Kesari K K. Soni R. Jamal Q M S. Tripathi P. Lal J A. Jha N K. Siddiqui M H. Kumar P. Tripathi V. Ruokolainen J. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water, Air, Soil Pollut. 2021; 232: 208. https://doi.org/10.1007/s11270-021-05154-8
3 Mishra B K. Kumar P. Saraswat C. Chakraborty S. Gautam A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water. 2021:https://doi.org/10.3390/w13040490
4 Hashem M S. Qi X. Treated Wastewater Irrigation—A Review. Water. 2021:https://doi.org/10.3390/w13111527
5 Parashar P. Prasad F M. Sharma S. Singh J. Physico Chemical Properties of the Sewage Water Used for Growing Certain Vegetable Crops in Etmadpur Area of Agra Region. Asian J. Res. Chem. 2011; 4: 399–401
6 Voulvoulis N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Heal. 2018; 2, 32–45: https://doi.org/https://doi.org/10.1016/j.coesh.2018.01.005
7 Jaramillo M F. Restrepo I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability. 2017: https://doi.org/10.3390/su9101734
8 Shukla L. Jain N. A review on soil heavy metals contamination: Effects, sources and remedies. Asian J. Res. Chem. 2020; 13:299. https://doi.org/10.5958/0974-4150.2020.00058.9
9 Alengebawy A. Abdelkhalek S T. Qureshi S R. Wang M-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021; 9: 42: https://doi.org/10.3390/toxics9030042
10 Ekins P. Zenghelis D. The costs and benefits of environmental sustainability. Sustain. Sci. 2021; 16: 949–965: https://doi.org/10.1007/s11625-021-00910-5
11 Kumbhoje S R. Tamboli Z H J. Souza J I D. Synthesis and Characterization of Schiff bases of Chitosan for their Improved Mucoadhesion. Asian J. Res. Chem. 2012; 5:1099–1103
12 Zubair M. Arshad M. Ullah A. Chapter 25 - Chitosan-based materials for water and wastewater treatment, in: Gopi S., Thomas S., Pius A B T-H. of C. and C. (Eds.), Elsevier, 2020; 773–809: https://doi.org/https://doi.org/10.1016/B978-0-12-817966-6.00025-X
13 Jeevitha R S J. Bella G R. Booshan S A T. Preparation and Characterization of Micro Crystalline Cellulose Fiber Reinforced Chitosan based Polymer Composites. Asian J. Res. Chem. 2015; 8:453. https://doi.org/10.5958/0974-4150.2015.00074.7
14 Muthu M. Gopal J. Chun S. Devadoss A J P. Hasan N. Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel, Switzerland). 2021; 10: 228: https://doi.org/10.3390/antiox10020228
15 Elieh-Ali-Komi D. Hamblin M R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016; 4: 411–427:
16 Saha A. Roy S. 2023. Harmful Effects of Different Classes of Heavy Metals in Our Beautiful Environment. Asian J. Res. Chem. 2023; 16(1):13-7.
17 Shirsat N D. Momin P S A. Bandekar A A. Sayed U. Synthesis of Water Soluble Chitosan from Marine Waste and Its Application in Wet Wipes Formulations. Asian J. Res. Chem. 2012; 5: 1419–1423.
18 Kaczmarek M B. Struszczyk-Swita K. Li X. Szczęsna-Antczak M. Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019; 7: 243: https://doi.org/10.3389/fbioe.2019.00243
19 Pestov A J. Bratskaya S. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules. 2016: https://doi.org/10.3390/molecules21030330
20 García O G Z. Oropeza-Guzmán M T. Argüelles Monal W M. López-Maldonado E A. Design and mechanism of action of multifunctional BPE’s with high performance in the separation of hazardous metal ions from polluted water Part I: Chitosan-poly(N-vinylcaprolactam) and its derivatives. Chem. Eng. J. 2019; 359 : 840–851: https://doi.org/https://doi.org/10.1016/j.cej.2018.11.134
21 Hu H. Xu K. Chapter 8 - Physicochemical technologies for HRPs and risk control, in: Ren H, Zhang X B T-H-R-P in W. (Eds.), . Elsevier, 2020; 169–207: https://doi.org/https://doi.org/10.1016/B978-0-12-816448-8.00008-3
22 Hegazi H A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. Asian J. Res. Chem. 2013; 9: 276–282. https://doi.org/10.1016/j.hbrcj.2013.08.004
23 Joseph L. Jun B-M. Flora J R V. Park C M. Yoon Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019; 229: 142–159: https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198
24 Dubey R. Bajpai J. Bajpai A K. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ. Nanotechnology, Monit. Manag. 2016; 6: 32–44: https://doi.org/https://doi.org/10.1016/j.enmm.2016.06.008
25 Omer A M. Dey R. Eltaweil A S. Abd El-Monaem E M. Ziora Z M. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arab. J. Chem. 2022; 15: 103543: https://doi.org/https://doi.org/10.1016/j.arabjc.2021.103543
26 Fatullayeva S. Tagiyev D. Zeynalov N. Mammadova S. Aliyeva E. Recent advances of chitosan-based polymers in biomedical applications and environmental protection. J. Polym. Res. 2022; 29: 259: https://doi.org/10.1007/s10965-022-03121-3
27 Yanat M. Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym. 2021;161, 104849: https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2021.104849
28 Yang J. Hou B. Wang J. Tian B. Bi J. Wang N. Li X. Huang X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomater. (Basel, Switzerland) 2019; 9: 424: https://doi.org/10.3390/nano9030424
29 Boufas S. Benhamza M E H. Seghir, B B. Hadria, F. Synthesis and Characterization of Chitosan/Carrageenan/Hydroxyethyl cellulose blended gels. Asian J. Res. Chem. 2020; 13: 209. https://doi.org/10.5958/0974-4150.2020.00040.1
30 Algharib S A. Dawood A. Zhou K. Chen D. Li C. Meng K. Zhang A. Luo W. Ahmed S. Huang L. Xie S. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. J. Mol. Struct. 2022; 1252, 132129: https://doi.org/https://doi.org/10.1016/j.molstruc.2021.132129
31 Riegger B R. Bäurer B. Mirzayeva A. Tovar G E M. Bach M. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment. Carbohydr. Polym. 2018; 180: 46–54: https://doi.org/https://doi.org/10.1016/j.carbpol.2017.10.002
32 Orellano M S. Longo G S. Porporatto C. Correa N M. Falcone R D. Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method. Colloids Surfaces A Physicochem. Eng. Asp. 2020; 599: 124876: https://doi.org/https://doi.org/10.1016/j.colsurfa.2020.124876
33 Grenha A. Chitosan nanoparticles: a survey of preparation methods. J. Drug Target. 2012; 20: 291–300: https://doi.org/10.3109/1061186X.2011.654121
34 Ngan L T K. Wang S L. Hiep Đ M. Luong P M. Vui N T. Đinh T M. Dzung N A. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res. Chem. Intermed. 2014; 40: 2165–2175: https://doi.org/10.1007/s11164-014-1594-9
35 Luque-Alcaraz A G. Lizardi-Mendoza J. Goycoolea F M. Higuera-Ciapara I. Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv. 2016; 6: 59250–59256: https://doi.org/10.1039/C6RA06563E
36 Khoerunnisa F. Yolanda Y D. Nurhayati M. Zahra F. Nasir M. Opaprakasit P. Choo M-Y. Ng E-P. Ultrasonic Synthesis of Nanochitosan and Its Size Effects on Turbidity Removal and Dealkalization in Wastewater Treatment. Inventions. 2021: https://doi.org/10.3390/inventions6040098
37 Mohammed M A. Syeda J T M. Wasan K M. Wasan E K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9: 53: https://doi.org/10.3390/pharmaceutics9040053
38 Wang Y. Li P. Truong-Dinh Tran T. Zhang J. Kong L. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer. Nanomaterials. 2016: https://doi.org/10.3390/nano6020026.
39 Patil K. Helavi V. Synthesis of Pyranopyrazoles by using Chitosan Hydrogel as a green and recyclable catalyst. Asian J. Res. Chem. 2018; 11: 477. https://doi.org/10.5958/0974-4150.2018.00087.1
40 Singh M. Loonker, S. Microwave assisted synthesis of chitosan epoxy asparagine hydroxamate (CE-AH) Characterization and Study of its antimicrobial activity. Asian J. Res. Chem. 2017; 10: 497. https://doi.org/10.5958/0974-4150.2017.00081.5
41 Zhang Y. Zhao M. Cheng Q. Wang C. Li H. Han X. Fan Z. Su G. Pan D. Li Z. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere 2021; 279: 130927: https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130927
42 Seyedmohammadi J. Motavassel M. Maddahi M H. Nikmanesh S. Application of nanochitosan and chitosan particles for adsorption of Zn(II) ions pollutant from aqueous solution to protect environment. Model. Earth Syst. Environ. 2016; 2: 165: https://doi.org/10.1007/s40808-016-0219-2
43 Pang Y L. Tan J H. Lim S. Chong W C. A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies. Kinetics. Isotherms and Thermodynamics. Polymers (Basel). 2021: https://doi.org/10.3390/polym13173009
44 Kim D. Petrisor I G. Yen T F. Evaluation of Biopolymer-Modified Concrete Systems for Disposal of Cathode Ray Tube Glass. J. Air Waste Manage. Assoc. 2005; 55: 961–969: https://doi.org/10.1080/10473289.2005.10464682
45 Kausar F. Bagheri A R. Rasheed T. Bilal M. Rizwan K. Nguyen T A. Iqbal H M N. Chapter 7 - Nanomaterials for removal of heavy metals from wastewater. in: Denizli A. Ali N. Bilal M. Khan A. Nguyen Air. and Soil Pollution. T A B T-N-B for D of W (Eds.). Micro and Nano Technologies. Elsevier. 2022; 135–161: https://doi.org/https://doi.org/10.1016/B978-0-323-90912-9.00007-1
46 Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2021.; 8. e08674–e08674: https://doi.org/10.1016/j.heliyon.2021.e08674
47 An J-H. Dultz S. Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl. Clay Sci. 2007; 36: 256–264: https://doi.org/https://doi.org/10.1016/j.clay.2006.11.001
48 Qi L. Xu Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2004; 251: 183–190: https://doi.org/https://doi.org/10.1016/j.colsurfa.2004.10.010
49 Tahoon M A. Siddeeg S M. Salem Alsaiari N. Mnif W. Ben Rebah F. Effective Heavy Metals Removal from Water Using Nanomaterials: A Review. Processes. 2020: https://doi.org/10.3390/pr8060645
50 Cheraghipour E. Pakshir M. Process optimization and modeling of Pb(II) ions adsorption on chitosan-conjugated magnetite nano-biocomposite using response surface methodology. Chemosphere 2020; 260: 127560: https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127560
51 Bhatt R. Sreedhar B. Padmaja P. Chitosan supramolecularly cross linked with trimesic acid – Facile synthesis. characterization and evaluation of adsorption potential for chromium(VI). Int. J. Biol. Macromol. 2017; 104: 1254–1266: https://doi.org/10.1016/j.ijbiomac.2017.06.067
52 Jaishankar M. Tseten T. Anbalagan N. Mathew B B. Beeregowda K N. Toxicity. mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014; 7: 60–72: https://doi.org/10.2478/intox-2014-0009
53 Velusamy S. Roy A. Sundaram S. Kumar Mallick T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. n/a. 2021: https://doi.org/10.1002/tcr.202000153
54 Mitra S. Chakraborty A J. Tareq A M. Emran T Bin. Nainu F. Khusro A. Idris A M. Khandaker M U. Osman H. Alhumaydhi F A. Simal-Gandara J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. - Sci. 2022; 34: 101865: https://doi.org/10.1016/j.jksus.2022.101865
55 Benettayeb A. Seihoub F Z. Pal P. Ghosh S. Usman M. Chia C H. Usman M. Sillanpää M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. Nanomaterials. 2023: https://doi.org/10.3390/nano13030447
56 Khan Z. AL-Thabaiti S A. Chitosan capped silver nanoparticles: Adsorption and photochemical activities. Arab. J. Chem. 2022; 15: 104154: https://doi.org/10.1016/j.arabjc.2022.104154
57 Chung J-Y. Yu S-D. Hong Y-S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014; 47: 253–257: https://doi.org/10.3961/jpmph.14.036
58 Purohit S. Chini M K. Chakraborty T. Yadav K L. Satapathi S. Rapid removal of arsenic from water using metal oxide doped recyclable cross-linked chitosan cryogel. SN Appl. Sci. 2020; 2: 768: https://doi.org/10.1007/s42452-020-2525-6
59 Aibani N. Rai R. Patel P. Cuddihy G. Wasan E K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021; 13: 1686: https://doi.org/10.3390/pharmaceutics13101686
60 Pintor A M A. Vieira B R C. Brandão C C. Boaventura R A R. Botelho C M S. Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. J. Environ. Chem. Eng. 2020; 8: 104184: https://doi.org/https://doi.org/10.1016/j.jece.2020.104184
61 Stefanidou M. Maravelias C. Dona A. Spiliopoulou C. Zinc: a multipurpose trace element. Arch. Toxicol. 2006; 80: 1–9: https://doi.org/10.1007/s00204-005-0009-5
62 Dasharathy S. Arjunan S. Maliyur Basavaraju A. Murugasen V. Ramachandran S. Keshav R. Murugan R. Mutagenic. Carcinogenic. and Teratogenic Effect of Heavy Metals. Evidence-Based Complement. Altern. Med. 2022; 8011953: https://doi.org/10.1155/2022/8011953
63 Plum L M. Rink L. Haase H. The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health 2010; 7: 1342–1365: https://doi.org/10.3390/ijerph7041342
64 Obasi P N. Akudinobi B B. Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki. southeast Nigeria. Appl. Water Sci. 2020; 10: 184: https://doi.org/10.1007/s13201-020-01233-z
65 Afroze S. Sen T K. Ang H M. Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics. mechanism and equilibrium study. Process Saf. Environ. Prot. 2016; 102: 336–352: https://doi.org/https://doi.org/10.1016/j.psep.2016.04.009
66 Esmaeili A. Khoshnevisan N. Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. Bioresour. Technol. 2016; 218: 650–658: https://doi.org/https://doi.org/10.1016/j.biortech.2016.07.005