Author(s):
Mohamed SEBTI, Samir Benamirouche
Email(s):
sebtimoh@gmail.com
DOI:
10.52711/0974-4150.2023.00052
Address:
Mohamed SEBTI1*, Samir Benamirouche2
1Laboratory of Environment, Biotechnology and Health, Faculty of Nature and Life Sciences, University of Jijel, 18000 Jijel, Algeria.
2National Institute of Forest Research, Regional Station of Jijel, Algeria.
*Corresponding Author
Published In:
Volume - 16,
Issue - 5,
Year - 2023
ABSTRACT:
The present works reported a new technique for conditioning and controlling the germination of healthy Quercus suber L. acorns under the antifungal, allelopathic and residual effects of five volatile oils and their hydrolates obtained by hydrodistillation of plant material and then were subjected to a GC/MS to identify their chemical composition. Monoterpenes were found to be dominant in both oils with amount ranging between 57.59 and 98.88%, followed by sesquitepenes (1.28- 40.07%), whereas ditepenes were found only in Pistacia lentiscus L. volatile oil (15.54%). Pistacia lentiscus L. and Myrtus communis L. volatile oils had the potent antifungal and fungistatic activity where no contamination were registered, a contamination percentage of 10% succeeded by a fungistatic effect was registered in both oils from Calamintha hispidula Boissier and reuter., Lavandula dentata L. and Eucalyptus camaldulensis Dehnh, whereas the control exhibited the weakest antifungal activity with 70% of contamination. Moreover, early germination during storage was more inhibited by volatile oils (10- 20%) than by the control (50%). Hydrolates were less effective than volatile oils in both fungi-infestaion (10- 80%) and germination (50- 90%). The second bio-assay conducted in non allelopathic conditions revealed that acorns previously treated by both volatile oils and hydrolates have resumed their germination with respective increases of 30 to 80% and 10%, respectively. Radicle elongation was, however, more pronounced for Hydrolates (0.13 - 0.62cm) than for volatile oils (0.06- 0.44cm). Owing to the antifungal, fungistatic and stimulating effects observed, the results of this study may help to develop new plant-based biocide for the control of fungi-infestation and early germination limiting the long-term safe storage of acorns.
Cite this article:
Mohamed SEBTI, Samir Benamirouche. Conditioning and Germination Control bio-assays of Quercus suber L. acorns under the Allopathic and Residual effects of Volatile Oils and Hydrolates from Aromatic Plants in Northeastern Algeria. Asian Journal of Research in Chemistry. 2023; 16(5):319-9. doi: 10.52711/0974-4150.2023.00052
Cite(Electronic):
Mohamed SEBTI, Samir Benamirouche. Conditioning and Germination Control bio-assays of Quercus suber L. acorns under the Allopathic and Residual effects of Volatile Oils and Hydrolates from Aromatic Plants in Northeastern Algeria. Asian Journal of Research in Chemistry. 2023; 16(5):319-9. doi: 10.52711/0974-4150.2023.00052 Available on: https://ajrconline.org/AbstractView.aspx?PID=2023-16-5-2
REFERENCES:
1. Caudullo G. Welk E. San-Miguel-Ayanz J. Chorological maps for the main European woody species. Data in Brief. 2017; 12: 662-666. https://doi: 10.1016/j.dib.2017.05.007
2. Benamirouche S. Chouial M. Messaoudene M. Storage of cork oak (Quercus suber L. 1753) acorns and effects of storage duration on seedling growth and vigor: artificial regeneration implications. Revue d’Ecologie (Terre et Vie). 2018; 73 (1): 80-95. Available at https://hal.archives-ouvertes.fr/hal-03532662/document.
3. Delatour C. Recherche d'une méthode de lutte curative contre le Ciboria batschiana (Zopf) Buchwald chez les glands. European Journal of Forest Pathology. 1978 ; 8: 193-200.
4. Merouani H. Trubat R. Lourenço M.J Sampaio T. Santos M.L Cortina J. Pereira J.S. & Almeida M.H. Le développement de champignons un facteur limitant la conservation à long terme des glands de chêne-liège (Quercus suber L.). Integrated Protection in Oak Forests IOBC/wprs Bull. 2005 ; 28:129-136.
5. Branco M. Branco C. Merouani H. Almeida M.H. Germination success survival and seedling vigour of Quercus suber acorns in relation to insect damage. For. Ecol. Manag. 2002; 166: 159-164. https://doi.10.1016/S0378-1127(01)00669-7.
6. Sales MDC. Costa HB. Bueno PM. Ventura JA. Meira DD. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pacific Journal of Tropical Biomedicine. 2016; 6 (1): 26-31. https://doi.org/10.1016/j.apjtb.2015.09.026.
7. Ninkuu V. Zhang L. Yan J. Fu Z. Yang T. Zeng H. Biochemistry of terpenes and recent advances in plant protection. International Journal of Molecular Sciences. 2021; 22 5710. https://doi.org/10.3390/ijms22115710.
8. Bergman M.E. Davis B. Phillips M.A. Medically useful plant terpenoids: Biosynthesis occurrence and mechanism of action. Molecules. 2019; 24: 3961. https://doi: 10.3390/molecules24213961.
9. Mutlu-Ingok A. Devecioglu D. Dikmetas D.N. Karbancioglu-Guler F. Capanoglu E. Antibacterial antifungal antimycotoxigenic and antioxidant activities of essential oils: An updated review. Molecules 2020; 25: 4711. https://doi: 10.3390/molecules25204711.
10. Lins L. Maso S.D. Foncoux B. Kamili A. Laurin Y. Genva M. Jijakli M.H. De Clerck C. Fauconnier M.L. Deleu M. Insights into the relationships between herbicide activities molecular structure and membrane interaction of Cinnamon and Citronella essential oils components. International Journal of Molecular Sciences. 2019 ; 20: 4007. https://doi: 10.3390/ijms20164007.
11. Suganya S. Bharathidasan R. Senthilkumar G. Madhanraj P. Panneerselvam A. Antibacterial activity of essential oil extracted from Coriandrum sativum (L.) and GC-MS analysis. Research Journal of Science and Technology. 2012; 4(5): 203-207.
12. Ieri F. Cecchi L. Giannini E. Clemente C. Romani A. GC-MS and HS-SPME GC-GC-TOFMS determination of the volatile composition of essential oils and hydrosols (By-products) from four eucalyptus species cultivated in Tuscany. Molecules. 2019; 24: 226; https://doi:10.3390/molecules24020226.
13. Bhusal Sonika S., Dhumane Poonam S, Saudagar Ravindra B. A Review on Grapes: The forgotten berry of cosmetics. Res. J. Topical and Cosmetic Sci. 2013; 4(1): 77-80.
14. Mishra K.K. Kaur C.D. Sahu A.K. Panik R. Kashyap P. Mishra S.P. Dutta S. Chapter 6: Medicinal plants having antifungal properties. In Hassan B; Medicinal plants: Use in prevention and treatment of diseases. Intechopen. 2019; https://doi: 10.5772/intechopen.83104.
15. Sempere-Ferre F. Asamar J. Castell V. Roselló J. Santamarina M.P. Evaluating the antifungal potential of botanical compounds to control Botryotinia fuckeliana and Rhizoctonia solani. Molecules. 2021; 26: 2472. https:// doi.org/10.3390/molecules26092472.
16. Araniti F. Sorgonà A. Lupini A. Abenavoli M.R. Screening of Mediterranean wild plant species for allelopathic activity and their use as bio-herbicides. Allelopathy Journal. 2012 ; 29 (1): 107-124. https://www.researchgate.net/publication/232071211.
17. Cheemalapati Venkata Narasimhaji, A. K. Meena, B. Maheshwari, Arjun Singh, Ravindra Singh , R. Ilavarasan. Evaluation of An Ayurvedic Polyherbal Formulation through TLC Fingerprint Profile of Volatile Oils: A Quality Control Approch. Research J. Pharm. and Tech 2019; 12(1): 291-296. doi: 10.5958/0974-360X.2019.00054.4
18. John Refaat, Mohamed S. Kamel, Mahmoud A. Ramadan, Ahmed A. Ali. GC-MS studies of Crinum asiaticum L. Leaves and Flowers. Research J. Pharmacognosy and Phytochemistry 2011; 3(5): 232-235.
19. Kordali S. Usanmaz A. Cakir A. Komaki A. Ercisli S. Antifugal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chemistry & Biochemistry. 2016; 13(1): 77- 84. https://doi.org/10.1002/cbdv.201500018.
20. Parakkal Rajendran Dignesh, Suriya Krishnan, Valarmathi Rajasekaran, Balaraman Kumar. Prevention of Board Curl. Research J. Engineering and Tech. 2013; 4(3): 113-120
21. Prabhat Singh, Bhupesh Sharma. Pharmacological connection of Histamine-1 (H1) Receptor Mediated Neuroprotective mechanism of Ischemic preconditioning in rat.Research Journal of Pharmacy and Technology. 2021; 14(5): 2717-2. doi: 10.52711/0974-360X.2021.00479
22. Sebaaly C. Charcosset C. Fourmentin S. Greige-Gerges H. Chapter 6 - Potential Applications of Cyclodextrin Inclusion Complexes Liposomes and Drug-in-Cyclodextrin-in-Liposome in Food Industry and Packaging in Alexandru Mihai Grumezescu Alina Maria Holban editor(s): In Handbook of Food Bioengineering Role of Materials Science in Food Bioengineering. Academic Press. 2018; pp. 187-234. ISBN 9780128114483. https://doi.org/10.1016/B978-0-12-811448-3.00006-1.
23. Moumni M. Romanazzi G. Najar B. Pistelli L. Ben Amara H. Mezrioui K. Karous O. Chaieb I. Allagui M.B. Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits. Antibiotics. 2021; 10: 104. https://doi: 10.3390/antibiotics10020104.
24. Justus B. De Almeida V.P. Gonçalves M.M. De Assunção1 DPSF. Borsato D.M Arana AFM. Et al. Chemical composition and biological activities of the essential oil and anatomical markers of Lavandula Dentata L. cultivated in Brazil. Brazilian Archives of Biology and Technology. 2018; 61: e18180111. http://dx.doi.org/10.1590/1678-4324-2018180111.
25. Boukhatem M.N. Sudha T. Darwish Noureldine H.E. Chader N. Belkadi A. Rajabi M. Houche A. Benkebailli F. Oudjida F. and Mousa S.A. A new eucalyptol-rich Lavender (Lavandula stoechas L.) essential oil: Emerging potential for therapy against inflammation and cancer. Molecules. 2020; 25: 3671; https://doi:10.3390/molecules25163671. www.mdpi.com/journal/molecules.
26. Wagner L.S. Sequin C.J. Foti N. Campos-Soldini M.P. Insecticidal fungicidal phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatalysis and Agricultural Biotechnology. 2021 ;35: 102092. https://doi.org/10.1016/j.bcab.2021.102092.
27. Nait Achour K. Mecherri M.O. Nabiev M. Volatiles leaf oil constituents from Eucalyptus camaldulensis Dehnh from Algeria. Arabian journal of medicinal and aromatic plants. 2015; 1 (2): 129-136. https://doi.org/10.48347/IMIST.PRSM/ajmap-v1i2.4330.
28. Sebti M. Zellagui A. Lehoual. Gherraf N. Ethnopharmacology and essential oils composition of Calamintha hispidula (Boissier and Reuter) Maire. growing in Algeria. Journal of Biologically Active Products from Nature. 2013; 3(5-6): 339-344. https://doi.org/10.1080/22311866.2013.866341.
29. Dammak I. Hamdi E. Kammoum El Euch S. Zemni H. Mliki A. Hassouna M. Larsam S. Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 18-cineole against Aspergillus carbonarius. Industrial Crops and Products. 2019; 128: 85-93. https://doi.org/10.1016/j.indcrop.2018.11.006.
30. Boubaker H. Karim H. Msanda F. Boudyach EH. Ait Ben Aoumar A. Study of essential oil composition and antifungal activity of Lavandula mairei L. dentata and Tetraclinis articulata. Journal of Applied Sciences. 2019; 19 (6): 544-550. https://doi: 10.3923/jas.2019.544.550.
31. Gakuubi M.M. Maina A.W. Wagacha J.M. Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Hindawi international journal of microbiology. 2017; ID 8761610. https://doi.org/10.1155/2017/8761610.
32. Sebti M. Lahouel M. Zellagui A. Phytochemical and pharmacological study of four aromatic plants growing in northeast of Algeria. Algerian Journal of Environmental Science and Technology. 2020; 6:3 1516-1525.
33. Djenane D.; Yanguela J.; Montanés L.; Djerbal M.; Roncales P. Antimicrobial activity of Pistacia lentiscus and Satureja Montana essential oils against Listeria monocytogenes CECT 935 using laboratory media; efficacy and synergistic potential in minced beef. Food Control. 2011; 22 1046-1053.
34. Imelouane B.; Elbachiri A.; Ankit M.; Benzeid H.; Khedid K. PhysicoChemical Compositions and Antimicrobial Activity of Essential Oil of Eastern Moroccan Lavandula dentate. International Journal of Agriculture & Biology. 2009; 11: 113-118.
35. Bouzabata A. Casanova J. Bighelli A. Cavaleiro C. Salgueiro L. Tomi F. The Genus Myrtus L. in Algeria: Composition and biological aspects of essential oils from M. communis and M. nivellei: A Review. Chemistry & Biodiversity. 2016;13 (6) : 672-680. https://doi.org/10.1002/cbdv.201500342.
36. Milia E. Bullitta S.M. Mastandrea G. Szotáková B. Schoubben A. Langhansová L. Quartu M. Bortone A. Eick S. Leaves and fruits preparations of Pistacia lentiscus L.: A Review on the ethnopharmacological uses and implications in inflammation and infection. Antibiotics. 2021; 10: 425. https://doi: 10.3390/antibiotics10040425.
37. Jiménez-Reyes M.F. Carrasco H. Olea A.F. Silva-Morenoe. Natural compounds: A sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society. 2019; 64 (2): 4459-4465.
38. Ghasemi G. Alirezalu A. Ghosta Y. Jarrahi A. Safavi S.A. Abbas-Mohammadi M. Barba F.J. Munekata P.E.S. Domínguez R. Lorenz J.M. Composition Antifungal phytotoxic and insecticidal activities of Thymus kotschyanus essential oil. Molecules. 2020; 25: 1152; https://doi:10.3390/molecules25051152.
39. Zhou S. Zokir T. Mei Y. Lei L. Shi K. Zou T. Zhang C. Shao H. Allelopathic effect of Serphidium kaschgaricum (Krasch.) Poljak. volatiles on selected species. Plants. 2021; 10: 495. https://doi.org/10.3390/plants10030495.
40. Abd-ElGawad A.M. El Gendy A.E.-N.G. Assaeed A.M. Al-Rowaily S.L. Omer E.A. Dar B.A. Al-Taisan W.A. Elshamy A.I. Essential oil enriched with oxygenated constituents from Invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants. 2020; 9 998. https://doi.org/10.3390/plants9080998
41. Dias I.J. Trajano E.R.I.S. Castro R.D. Ferreira G.L.S. Medeiros H.C.M. Gomes D.Q.C. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis. Brazilian Journal of Biology. 2018; 78 368-374. https://doi.org/10.1590/1519-6984.171054.
42. Müller-Sepúlveda A. Chevecich C.C. Jara J.A. Belmar C. Sandoval P. Meyer R.S. Quijada R. Moura S. López-Muñoz R. Díaz-Dosque M. Molina-Berrios A. Chemical characterization of Lavandula dentata essential oil cultivated in Chile and its antibiofilm effects against Candida albicans. Planta Medica. 2020; 86 (16) : 1225-1234. https://doi: 10.1055/a-1201-3375.
43. Yılmaz M. Baysal Ö. Sīlme RS. The effect of a seed coating with Origanum vulgare essential oil on Clavibacter michiganensis subsp. Michiganensis. Plant Protection Science. 2021; 57(3): 217-225. https://doi.org/10.17221/177/2020-PPS.
44. Bachheti A. Sharma A Bachheti R. K. Husen A. Pandey D. P. Plant allelochemicals and their various applications. In book: Co-evolution of secondary metabolites. Springer International Publishing. 2019; https://doi:10.1007/978-3-319-76887-8_14-1.
45. Aarti, Yumnam Devashree. The Phytotoxic Effect of Aqueous extract of Cannabis Sativa on the Germination and Growth of Cicerarietinum. Research J. Pharm. and Tech 2018; 11(11): 5096-5100. doi: 10.5958/0974-360X.2018.00930.7
46. Skand Kumar Mishra. Allelopathic Potential of Convolvulus arvensis Linn. on seed germination and seedling growth of Wheat (Triticum vulgare) . Res. J. Pharmacognosy and Phytochem. 2018; 10(2): 157-162. doi: 10.5958/0975-4385.2018a.00023.7
47. Skand Kumar Mishra. Allelopathic potential of Phyllanthus niruri Linn. on seed germination and seedling growth of Paspalum (Paspalum scrobiculatum). Research J. Science and Tech. 2018; 10(3):181-187. doi: 10.5958/2349-2988.2018b.00025.6
48. Skand Kumar Mishra. Allelopathic Potential of Phyllanthus niruri Linn. on seed Germination and Seedling Growth of Rice (Oryza sativa). Res. J. Pharmacognosy and Phytochem. 2017; 9(2): 77-82. doi: 10.5958/0975-4385.2017.00014.0
49. Ben Ghnaya A. Amri I. Hanana M. Gargouri S. Jamoussi B. Romane A. Hamrouni L. Tetraclinis articulata (Vahl.) Masters essential oil from Tunisia: Chemical characterization and herbicidal and antifungal activities assessment. Industrial Crops and Products. 2016; 83:113-117. https://doi.org/10.1016/j.indcrop.2015.12.026.
50. Wei C. Zhou S. Li W. Jiang C.Yang W. Han C. Zhang C. Sha H. Chemical composition and allelopathic phytotoxic and pesticidal pctivities of Atriplex cana LEDEB. (Amaranthaceae) essential oil. Chemistry and biodiversity. 2019; 16 e1800595. https://doi:10.1002/cbdv.201800595.
51. Ugolini F. Crisci A. Albanese L. Cencetti G. Maienza A. Michelozzi M. Zabini F. Meneguzzo F. Effects of Silver fir (Abies alba Mill.) needle extract produced via hydrodynamic cavitation on seed germination. Plants. 2021; 10: 1399. https://doi.org/10.3390/plants10071399.
52. Mirmostafaee S. Azizi M. Fujii Y. Effects of essential oil of some medicinal plants on seed germination and seedling growth of Lettuce as an Indicator. Journal of Plant Protection. 2020; 33(4): 475-491. https://doi: 10.22067/jpp.v33i4.83112.
53. Caputo L. Cornara L. Raimondo F.M. De Feo V. Vanin S. Denaro M.; Trombetta D.; Smeriglio A. Mentha pulegium L. A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules. 2021; 26 2154. https://doi.org/10.3390/molecules26082154.