ABSTRACT:
The solubility of Glutaric acid in water, ethanol and water + ethanol binary solvent was determined over the entire composition range between 0 to 1 weight fraction of ethanol at (293.15, 295.15, 298.15, 300.15, 303.15, 305.15, 308.15, and 313.15) K. The Apelblat and van’t Hoff equation was used to correlate the experimental solubility data and the equations provide better correlation in this study. The activity coefficients were calculated to evaluate molecular solute-solvent interaction. DFT was carried out to correlate solubility in various solvents system. Thermodynamic properties ( , %?H, %?TS) of solution were calculated using van’t Hoff equation.
Cite this article:
R. R. Pawar, S. B. Nahire. Measurement, Correlation and DFT study for Solubility of Glutaric acid in Water + Ethanol binary solvents at T = (293.15 to 313.15) K. Asian J. Research Chem. 2020; 13(3):169-174. doi: 10.5958/0974-4150.2020.00033.4
Cite(Electronic):
R. R. Pawar, S. B. Nahire. Measurement, Correlation and DFT study for Solubility of Glutaric acid in Water + Ethanol binary solvents at T = (293.15 to 313.15) K. Asian J. Research Chem. 2020; 13(3):169-174. doi: 10.5958/0974-4150.2020.00033.4 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-3-3
REFERENCES:
1. Stephen, C. U.S. Patent 5,166,406, November 24, 1992.
2. McNamara, D.; Childs, S. L. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API J. Pharm. Res., 23, 2006: 1888−1897.
3. Navarro, E.; Subirana, A.; Puiggali, J. The structure of nylon 12,5 is characterized by two hydrogen bond directions as are other polyamides derived from glutaric acid. Polymer., 38, 1997: 3429−3432.
4. Walter, D. R.; Gerd, D. H. E.P. Patent 0,033,851, August 19, 1981.
5. Singrey, S. L.; Thomas, S. C. U.S. Patent 3,338,959, August 29, 1967.
6. Hua, C., Ma, P.S., Xia, S.Q., Bai, P., “Solubility of methane in the mixture of ethanol+hexane at high pressures. Chin. J. Chem. Eng., 13(1), 2005: 144—148.
7. Pawar, R. R.; Nahire, S. B.; Hasan, M. Solubility and Density of Potassium Iodide in Binary Ethanol-Water Solvent Mixture at (298.15, 303.15, 308.15, and 313.15) K J. Chem. Eng. Data, 54, 2009: 1935−37.
8. Pawar, R. R.; Golait, S. M.; Hasan, M; Sawant, A. B. Solubility and Density of Potassium Iodide in a Binary Propan-1-ol−Water Solvent Mixture at (298.15, 303.15, 308.15, and 313.15) K J. Chem. Eng. Data. 55, 2010: 1314−16.
9. Pawar, R. R.; Aher C.S.; Pagar J. D.; Nikam S.L.; Hasan, M. Solubility, Density and Solution Thermodynamics of NaI in Different Pure Solvents and Binary Mixtures J. Chem. Eng. Data. 57, 2012: 3563−3572
10. Frisch M J, et al. Gaussian 03, Rev. E. 01, Gaussian Inc, Wallingford, CT, 2004.
11. Lee C, Yang W, Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B., 37: 1988, 785.
12. Zhu P, Chen Y, Fang J, et.al. Solubility and solution thermodynamics of thymol in six pure organic solvents J. Chem. Thermodynamics, 92, 2016: 198-206
13. Apelblat A Manzurola E., Solubility of ascorbic, 2-furancarboxylic, glutaric, pimelic, salicylic, and o-phthalic acids in water from 279.15 to 342.15 K, and apparent molar volumes of ascorbic, glutaric, and pimelic acids in water at 298.15 K J. Chem. Thermodynamics 21, 1989: 1005-1008.
14. Luo W., Xie K., Liu D., Li X., Tao B., Measurement and correlation for solubilities of adipic acid, glutaric acid, and succinic acid in dimethyl adipate+ methanol mixtures J. Chem. Eng. Data 62, 2017: 3124.
15. Ruidiaz M A, Delgado D R, Martínez F Y. Marcus Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures Fluid Phase Equilib., 299, 2010: 259–265.
16. Hildebrand J H, Prausnitz J M, Scott R L. Regular and Related Solutions, Van Nostrand Reinhold, New York, 1970.
17. Roux, M. V.; Temprado, M.; Chickos, J. S. Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16. J. Chem. Thermodyn., 37, 2005: 941−953.
18. Apelblat A, Manzurola E. Solubilities ofo-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, andp-toluic acid, and magnesium-DL-aspartate in water fromT=(278 to 348) K J. Chem. Thermodyn., 31 1999: 85–91.
19. Zhang J., et. al., Solubility and thermodynamic functions of cefazolin acid in pure and mixed solvents at (278.15–308.15) K. Fluid Phase Equilib. 387, 2015: 95–102.
20. Wang S., et al., Temperature dependent solubility of sodium cyclamate in selected pure solvents and binary methanol+ water mixed solvents Fluid Phase Equilib. 390, 2015: 1–6.
21. Zhao W., Yang W., Hao J., Determination and Thermodynamic Modeling of Solid–Liquid Phase Equilibrium for Esomeprazole Sodium in Monosolvents and in the (Ethanol + Ethyl Acetate) Binary Solvent Mixtures Chem. Eng. Data 62, 2017: 1965-1972.
22. Kim K. H., et al. Solubility evaluation and thermodynamic modeling of β-lapachone in water and ten organic solvents at different temperatures Fluid Phase Equil. 472, 2018: 1-8.