Author(s):
Ilhem Djaghout, Rabah Ksouri, Rafik Maizi, Abdel Ghani Boudjahem, Meryem Derdare
Email(s):
ksourira@hotmail.com
DOI:
10.52711/0974-4150.2022.00074
Address:
Ilhem Djaghout1,2, Rabah Ksouri3, Rafik Maizi4, Abdel Ghani Boudjahem5, Meryem Derdare6
1Laboratoire d’analyses Industrielles et génie des matériaux, Université 8 Mai 1945 Guelma,B.P 401, 24000 Guelma, Algérie.
2Department de Génie des procédés, Université de Souk Ahras.
3Laboratoire De Chimie Appliquée, Université 8 Mai 1945 Guelma, B.P 401, 24000 Guelma, Algérie.
4Laboratoire De Physique Des Matériaux L2PM, Université 8 Mai 1945 Guelma, B.P 401, 24000 Guelma, Algérie.
5Laboratoire De Chimie Appliquée, Université 8 Mai 1945 Guelma, B.P 401, 24000 Guelma, Algérie.
6Laboratoire De Chimie Appliquée, Université 8 Mai 1945 Guelma, B.P 401, 24000 Guelma, Algérie.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
The structural, elastic and thermodynamic properties of the manganese monocarbide in ZnS (B3) phase were investigated using the DFT calculation with the PBE functional. The ground state properties of this materials such as lattice constant, bulk modulus, pressure derivatives of bulk modulus and Young’s modulus are calculated and the obtained results show a good agreement with the experimental data. Moreover, the estimated values of elastic constants indicate that the studied material is found to be mechanically stable. The results show also that the heat capacity of this materials as a function of the temperature is close to the Dulong-Petit limit (49.6 J/mol.K)at higher temperatures. The thermal expansion( a) and Debye parameter were also calculated at the different temperatures. The pressure effects on the above parameters were computed and their values are compared with the experimental results.
Cite this article:
Ilhem Djaghout, Rabah Ksouri, Rafik Maizi, Abdel Ghani Boudjahem, Meryem Derdare. Structural, Mechanical and Thermodynamic properties of Manganese Monocarbide (MnC) in ZnS phase under High Pressure: a DFT Study. Asian Journal of Research in Chemistry. 2022; 15(6):422-8. doi: 10.52711/0974-4150.2022.00074
Cite(Electronic):
Ilhem Djaghout, Rabah Ksouri, Rafik Maizi, Abdel Ghani Boudjahem, Meryem Derdare. Structural, Mechanical and Thermodynamic properties of Manganese Monocarbide (MnC) in ZnS phase under High Pressure: a DFT Study. Asian Journal of Research in Chemistry. 2022; 15(6):422-8. doi: 10.52711/0974-4150.2022.00074 Available on: https://ajrconline.org/AbstractView.aspx?PID=2022-15-6-6
REFERENCES:
1. A. Srivastava, M. Chauhan, and R.K. Singh, High-pressure phase transitions in transition metal carbides XC (X=Ti, Zr, Hf, V, Nb, Ta): a first-principle study. Phase Transitions. 2011; 84(1): 58-66.doi. 10.1080/01411594.2010.509644
2. H. Ihara, M. Hirabayashi, H. Nakagawa. Electronic band structures and x-ray photo electron spectra of ZrC, HfC, and TaC. Physical review B.1976; 14 (4): 1707-1714.doi.org/10.1103/PhysRevB.14.1707
3. A. Singh, M. Aynyas, S.P. Sanyal. Phase transition and high-pressure behavior of Zirconium and Niobium carbides. Central European Journal of Physics. 2009; 7 (1):102-107.doi: 10.2478/s11534-008-0117-y
4. E.I. Isaev S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov et al. Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study.Journal of applied physics. 2007; 101 (12) : 123519.1-18.doi.org/10.1063/1.2747230
5. Z.Wu, X.J. Chen, V.V. Struzhkin, R.E. Cohen. Trends in elasticity and electronic structure of transition-metal nitridesand carbides from first principles. Physical review B. 2005; 71:214103. 1-15.doi :10.1103/PhysRevB.71.214103
6. J. Haglund, G. Grimvall, T. Jarlborg, A. Fernandez Guillermet. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaC1-type structure, Physical Review B. 1991; 43(18) :14 400-14 408.doi.org/10.1103/PhysRevB.43.14400
7. A.N. Arpita, N.R. Sanjay Kumar, S. Chandra, S. Amirthapandian, N.V. Chandra Shekar, and K. Sridhar. High-Pressure Synthesis of Manganese Monocarbide: A Potential superhard Material. Inorganic Chemistry.2018; 57:14178-14186.doi: 10.1021/acs.inorgchem.8b02148
8. G. L. Gutsev, L. Andrews, Charles W. Bauschlicher, Jr. Similarities and differences in the structure of 3d-metal monocarbides and monoxides. Theoretical Chemistry Account.2003; 109:298-308.doi : 10.1007/s00214-003-0428-4
9. A. Kalemos, T. H. Dunning, Jr., A. Mavridis. Ab initio study of the electronic structure of manganese carbide. Journal of Chemical Physics. 2006; 124:154308-154314.doi:10.1063/1.2181972
10. B. Manichandra, A. Devaraju, K. Pulluru SATISH. Mechanical and microstructural characterization of Al6061-t6/SICP nano surface composites by friction stir processing (FSP). 2018; 9(1) : 27-36. doi: 10.5958/2321-581X.2018.00005.3
11. K. Naresh, K. Richa, Study of Structural and Electrical Properties of R0.67Sr0.33MnO3, (R = Nd, Pr), Research Journal of Engineering and Technology. 2015; 6(1):188-190. doi: 10.5958/2321-581X.2015.00027.6
12. L. Shinde Bajarang, S. Lohar Kishan, Composition Dependent Elastic Properties of Chromium Doped NiCuZn Ferrite. asian journal of research in chemistry. 2018 ; 11(2) : 231-235. doi : 10.5958/0974-4150.2018.00043.3
13. Dilip C. Sawant, R. G. Deshmukh. Magnetic and structural studies of complexes of isonitropropiophenone thiocarbonohydrzone benzaldehydes with Ni (II), Pd (II) and Pt (II). Asian journal of Research in Chemistry. 2018 ; 11(4) :717-722. doi:10.5958/0974-4150.2018.00127.X
14. B. Keerthi Priya, Pulluru SATISH Kumar, Shiva chander Mothukuri. Effect of mechanical properties and microstructural characterization of friction stir wilded 5083 alluminium alloy. Research Journal of Engineering and Technology. 2019 ; 10(3) : 145-150. doi : 10.5958/2321-581X.2019.00025.4
15. Y. M. Adnan Younis, I. Hussain Bukhari, Q. Abbas, N. Bin Talib, Synthesis, importance and applications of metal oxide nanomaterials. International Journal of Technology. 2018; 8(2) : 49-57. doi :10.5958/2231-3915.2018.00008.1
16. K. Manoranjan, R. R. Guin, S.C.Nayak. Synthesis and structural studies of some new cobalt (II) complexes with chloride and heterocyclic nitrogen donor ligands. Asian Journal of Research in Chemistry. 2015 ; 8(4) :262-266. doi : 10.5958/0974-4150.2015.00045.0
17. N. Verma, P. S. Rao, S. C. Vettivel. Characterization and experimental investigation on mechanical behavior of B4C and RHA reinforced aluminium alloy 7075 hybrid composite using stir casting, Research Journal of Engineering and Technology. 2017 ; 8(3) : 179-186. doi:10.5958/2321-581X.2017.00029.0
18. K. Nagariaju, A. Devaraju, B. Manichandra. Mechanical characterization of Al 6061 surface composite with nano particle (TiC) fabricated by friction stir processing. Research Journal of Engineering and Technology. 2018 ; 9 (4) : 288-292. doi: 10.5958/2321-581X.2018.00038.7
19. K. Santhosh Kumar, N. Priyanka. Synthesis and Enhancement of mechanical properties of TiO2 Nano particles on Mild steel. Research Journal of Engineering and Technology. 2018 ; 10(3) : 137-144. DOI: 10.5958/2321-581X.2019.00024.2
20. C. Fan, S.Zeng, Z.Zhan, R.Liu, W.Wang, P.Zhang, Y.Yao. Low compressible noble metal carbides with rocksalt structure : Ab initio total energy calculations of the elastic stability. Applied Physics Letters. 2006; 89 (7):0719131-4. doi: 10.1063/1.2335571
21. A. Otero-de-la-Rosa,D.Abbasi-Pérez, and V.Luaña.Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-statethermodynamics, features and implementation.ComputerPhysicsCommunication. 2011; 182: 2232-2248.doi:10.1016/j.cpc.2011.05.009
22. S. Gaurav, B.S.Sharma, S.B.Sharma, S.C.Upadhyaya. Analysis of equations of state for solids under highcompressions.Physica B. 2002; 322 : 328-339. doi.org/10.1021/acs.inorgchem.8b02148
23. S.S.Kushwah, H.C.Shrivastava, K.S.Singh. Study of pressure–volume relationships and higher derivatives of bulkmodulus based on generalized equations of state. Physica B. 2007; 388 : 20-25. doi:10.1016/j.physb.2006.05.001
24. Y. Sato-Sorensen. Phase Transitions and Equations of State for the Sodium Halides : NaF, NaC1, NaBr, and NaI. Journal ofGeophysicalResearch.1983; 88: pp. 3543-3548. doi.org/10.1029/JB088iB04p03543
25. Y. Cheng, L.Y. Lu, O.H. Jia, and Q. Q. Gou. First-Principle Calculations for Transition Phase and Elastic Properties of SrS. Communications in Theoretical Physics. 2008; 49: 1611-1614. doi: 10.1088/0253-6102/49/6/56
26. L.Y. Lu, Y. Cheng, X. R. Chen, J. Zhu. Thermodynamics properties of MgO under high pressure from First-Principle calculation. Physica B. 2005; 370: 236-242.doi:10.1016/j.physb.2005.09.017
27. X.L. Yuan, M.A. Xue, W. Chen, T.Q. An. First-principles study of structural, elastic, electronic, magnetic and thermoproperties of Ni2ZrX (X = Sn, Sb) Heusler alloys under pressure. Computational Materials Science. 2014; 82; 76-85.doi.org/10.1016/j.commatsci.2013.08.059
28. X. K. Liu, C. Liu, Z. Zheng, X. H. Lan. First-principles investigation on the structural and elastic properties of cubic-Fe2TiAl under high pressures. Chinese Physics B. 2013; 22 (8): 7102.1-6.doi: 10.1088/1674-1056/22/8/087102
29. J. Z. Zhao, L. Y. Lu, Xiang-Rong Chen, Yu-Lin Bai. First-principles calculations for elastic properties of the rock salt structure MgO. Physica B. 2007; 387:245-249.doi:10.1016/j.physb.2006.04.013
30. Y. O Ciftci, Y. Ünlü, K. Colakoglu, E. Deliogoz. The structural, thermodynamical and elastic properties of Tio. Physica Scripta. 2009; 80:025601.1-6.doi:10.1088/0031-8949/80/02/025601
31. R. Ksouri, R. Maizi, I. Djaghout, A. G. Boudjahem, M. Derdar.Ab Initio Study on Structural, Elastic, and Thermodynamic Properties of Manganese Chalcogenides MnX (X = S and Se) in NaCl Phase under Pressure. Russian Journal of Inorganic Chemistry. 2022; 67 (2): 193-200.doi: 10.1134/S0036023622020139
32. R. Maizi, R. Ksouri, A. G. Boudjahem, M. Derdar. First-Principles Calculations of Structural, Thermodynamic and Elastic Properties of Lead Chalcogenides PbX (X = S, Se, and Te) in NaCl (B1) Phase. Russian Journal of Inorganic Chemistry.2020; 66 (14) :2084-2090.doi: 10.1134/S0036023621140023