Author(s):
R. Parkavi, N. Kavitha J. Lekha, K. Dinakaran
Email(s):
kavichemistry89@gmail.com , nkavitharanjani@gmail.com
DOI:
10.5958/0974-4150.2020.00050.4
Address:
R. Parkavi, N. Kavitha J. Lekha, K. Dinakaran*
Department of Chemistry, Thiruvalluvar University, Vellore – 632115, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2020
ABSTRACT:
A highly sensitive ratiometric fluorescent assay for the detection of Cd2+in water using metal coordinating polymer namely Indole functionalized polysulfone has been developed. Indole molecule has been introduced into the commercially available polysulfone through formation of imine linkage between indole-3-carboxaldehyde and aminated polysulfone. The indole functionalized polysulfone exhibited a fluorescent emission with a peak maximum at 391nm and 420nm, the intensity of the emission at 391nm is increased proportional to the addition of Cd2+ ions. The lowest detection limit for the Cd2+ has been found to be 2.4 nm. Further, the adsorbent capacity of the indole functionalized polysulfone has been evaluated at various pH. It is observed from the results that the adsorbent effectively adsorbs Cd2+at basic pH, and capable of removing 0.179g of Cd2+ / g of polymer.
Cite this article:
R. Parkavi, N. Kavitha J. Lekha, K. Dinakaran. Ratiometric fluorescent detection and removal of cadmium ions from aqueous solution using Indole functionalized Polysulfone. Asian J. Research Chem. 2020; 13(4):255-260. doi: 10.5958/0974-4150.2020.00050.4
Cite(Electronic):
R. Parkavi, N. Kavitha J. Lekha, K. Dinakaran. Ratiometric fluorescent detection and removal of cadmium ions from aqueous solution using Indole functionalized Polysulfone. Asian J. Research Chem. 2020; 13(4):255-260. doi: 10.5958/0974-4150.2020.00050.4 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-4-4
REFERENCES:
1. Goyer, R. A.; Liu, J.; Waalkes, M. P. (2004) Cadmium and cancer of prostate and testis. BioMetals 17, 555–558. DOI: 10.1023/B: BIOM.0000045738.59708.20.
2. Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P. E. B.; Williams, D. J.; Moore, M. R. (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137, 65–83. DOI: 10.1016/S0378-4274(02)00381-8.
3. Senthilkumar, S.; Saraswathi, R. (2009) Electrochemical sensing of cadmium and lead ions at zeolite modified electrodes: Optimization and field measurements. Sens. Actuators B Chem 141, 65–75. DOI: 10.1016/j.snb.2009.05.029
4. Tanyu Cheng, Yufang Xu, Shenyi Zhang, Weiping Zhu, Xuhong Qian and Liping Duan A. (2008) Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. J. Am. Chem. Soc. 130 (48), pp 16160–16161 DOI: 10.1021/ja806928n
5. Lin Xue†‡, Chun Liu§ and Hua Jiang*† (2009) Highly Sensitive and Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in Aqueous Media. Org. Lett. 11 (7), pp 1655–1658 DOI: 10.1021/ol900315r
6. Xiaoyan Zhou, Pengxuan Li, Zhaohua Shi, Xiaoliang Tang, Chunyang Chen, and Weisheng Liu*A (2012) Highly Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions Based on a Quinoline Platform. Inorg. Chem. 51 (17), pp 9226–9231. DOI: 10.1021/ic300661c
7. Qiang Zhao, Rui-Fang Li, Sheng-Kai Xing, Xiu-Ming Liu, Tong-Liang Hu, and Xian-He Bu*A (2011) Highly Selective On/Off Fluorescence Sensor for Cadmium (II). Inorg. Chem.50 (20), pp 10041–10046 DOI: 10.1021/ic2008182
8. 8 Gregory M. Cockrell,†, Gang Zhang,‡, Donald G. VanDerveer,§, Randolph P. Thummel,*‡ andRobert D. Hancock*†(2008) Enhanced Metal Ion Selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(II). J. Am. Chem. Soc. 130 (4), pp 1420–1430. DOI: 10.1021/ja077141m
9. H. N. Kim, Z. Guo, W. Zhu, J. Yoon and H. Tian, (2011) Recent progress on polymer based fluorescent and colorimetric chemosensors. Chem. Soc. Rev 40, 79. DOI: 10.1039/C0CS00058B
10. Jatindranath Maiti, Binod Pokhrel, Ratan Boruah, Swapan Kumar Dolui, (2009) Polythiophene based fluorescence sensors for acids and metal ions. Sensors and Actuators B: Chemical 447-451. DOI: 10.1016/j.snb.2009.07.008
11. Srinivasan K, Subramanian K, Murugan K, Dinakaran K. (2016) Sensitive fluorescence detection of mercury (II) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots. Analyst, 141, 6344 - 6352.
DOI: 10.1039/C6AN00879H
12. Banupriya C, Srinivasan K, Rajasekar A, Murugan K, Benelli G, Dinakaran K. (2017) Metal enhanced fluorescence mediated assay for the detection of Hg(II) ions in aqueous solution from rhodamine B and Silver nanoparticle embedded silica thin film. Chinese Chemical Letters, 28, 1399-1405. DOI: 10.1016/j.cclet.2017.01.018
13. Srinivasan K, Subramanian K, Murugan K, Benelli G, Dinakaran K (2018) Fluorescence Quenching of MoS2 Nanosheets/DNA/Silicon Dots Nanoassembly: Detection of Hg2+ ions in aqueous solution. Environmental Science and Pollution Research 25(11), 10567–10576. DOI: 10.1007/s11356-018-1472-x
14. I.-K. Kim, A. Dunkhorst, J. Gilbert and U. H. F. Bunz, (2005) Sensing of Lead Ions by a Carboxylate-Substituted PPE: Multivalency Effects Macromolecules.38,4560. DOI: 10.1021/ma050595o
15. Grynkiewicz, G.; Poenie, M.; Tsien, R.Y(1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450.
16. Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong,Z.; Zhou, Z.; Li, F. (2010) Phosphorescence Imaging of Homocysteine and Cysteine in Living Cells Based on a Cationic Iridium(III) Complex Inorg. Chem. 49, 6402–6408. DOI: 10.1021/ic902266x
17. Zhao, Q.; Li,F.; Huang, (2010) Phosphorescent chemosensors based on heavy-metal complexes C.Chem. Soc. Rev.39, 3007–3030. DOI: 10.1039/B915340C
18. Zhao, Q.; Huang, C.; Li, F. (2011) Phosphorescent heavy-metal complexes for bioimaging
19. Chem. Soc. Rev. DOI: 10.1039/C0CS00114G
20. Krishnendu Aich, Shyamaprosad Goswami, Sangita Das, Chitrangada Das Mukhopadhyay, Ching Kheng Quah, and Hoong-Kun Fun (2015) Cd2+ Triggered the FRET “ON”: A New Molecular Switch for the Ratiometric Detection of Cd2+ with Live-Cell Imaging and Bound X-ray Structure. Inorg. Chem., 54 (15), pp 7309–7315. DOI: 10.1021/acs.inorgchem.5b00784
21. Lin Xue, Guoping Li, Qing Liu, Huanhuan Wang, Chun Liu, Xunlei Ding, Shenggui He, and Hua Jiang (2011) Ratiometric Fluorescent Sensor Based on Inhibition of Resonance for Detection of Cadmium in Aqueous Solution and Living Cells. Inorg. Chem., 50(8), pp 3680–3690. DOI: 10.1021/ic200032e
22. Meng Wang, Jungang Wang,Weijian Xue, Anxin Wu, (2013) A benzimidazole-based ratiometric fluorescent sensor fr Cr3+ and Fe3+ in aqueous solution. Dyes and Pigments. 97(3) 475-480. DOI: 10.1016/j.dyepig.2013.02.005
23. Yang Ma, Haiyan Chen, Fang Wang Srinivasulu Kambam, Yong Wang, Chun Mao, Xiaoqiang Chen (2014) A highly sensitive and selective ratiometric fluorescent sensor for Zn2+ ion based on ICT and FRET. Dyes and Pigments. 102, 301-307. DOI: 10.1016/j.dyepig.2013.11.011
24. V. Devi, M. Selvaraj, P. Selvam, A. Ashok Kumar, S. Sankar, K. Dinakaran (2017) Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: An efficient adsorbent for the removal of cadmium ion from water. Journal of Environmental Chemical Engineering, 5, 4539–4546. DOI: 10.1016/j.jece.2017.08.036