Author(s):
Mohamed Bilal Goudjil, Nabila Sid, Asma Omar Ayachi, Souad Zighmi, Djamila Hamada, Zineb Mahcene, Salah Eddine Bencheikh, Segni Ladjel
Email(s):
goudjil.bilal@univ-ouargla.dz
DOI:
10.5958/0974-4150.2020.00077.2
Address:
Mohamed Bilal Goudjil1,4*, Nabila Sid4, Asma Omar Ayachi2,4, Souad Zighmi2,4, Djamila Hamada1,4, Zineb Mahcene3, Salah Eddine Bencheikh1,5, Segni Ladjel1,4
1University Ouargla, Faculty. Applied Sciences, Laboratory. Process Engineering, Ouargla 30000, Algeria.
2University Ouargla, Faculty. Applied Sciences, Laboratory. Engineering Laboratory of Water and Environment in Middle Saharian, Ouargla 30000, Algeria.
3University Ouargla, Faculty. Sciences of the nature and life, Laboratory. Protection of Ecosystems in Arid and Semi-Arid Zones, Ouargla, Algeria.
4University Ouargla, Faculty. Applied Sciences, Department of Process Engineering, Ouargla 30000, Algeria.
5University Ghardaia, Faculty. Science and Technology, Department of Process Engineering, Ghardaia, Algeria.
*Corresponding Author
Published In:
Volume - 13,
Issue - 6,
Year - 2020
ABSTRACT:
This study is part of the framework for the enhancement of agro-food waste ( olive grains) for the adsorption of a cationic dye by two methods, the first is to use its waste in a natural form (biosorbent) and the second is to the preparation and characterization chemically of an activated carbon from grain by using an activating agent (nitric acid), we studied the influence of several parameters (concentration of methylene blue, mass of olive grains, pH and temperature). The kinetic data was modeled by pseudo first order equations, pseudo-second order and intraparticle diffusion model; The Langmuir-Freundlich model was chosen for the representation of the experimental results. The experimental results are shown that the effect of the mass of adsorbent on the adsorption capacity increased respectively with increasing the mass of adsorbent and dye adsorption is promoted in a room temperature. Modeling results showed that the adsorption of methylene blue on olive grain follows the second order pseudo model for all concentrations in both adsorption and bio-sorption. The study of the isotherm shows that the Langmuir model well describes the process of adsorption of methylene blue on olive grains. All these results show that olive grains could use effectively as a low-cost adsorbent for the removal of cationic dye of an aqueous solution.
Cite this article:
Mohamed Bilal Goudjil, Nabila Sid, Asma Omar Ayachi, Souad Zighmi, Djamila Hamada, Zineb Mahcene, Salah Eddine Bencheikh, Segni Ladjel. Textile Dye removal by Adsorption on Olive Grain as Solid Waste from the Olive Oil Extraction. Asian J. Research Chem. 2020; 13(6):424-432. doi: 10.5958/0974-4150.2020.00077.2
Cite(Electronic):
Mohamed Bilal Goudjil, Nabila Sid, Asma Omar Ayachi, Souad Zighmi, Djamila Hamada, Zineb Mahcene, Salah Eddine Bencheikh, Segni Ladjel. Textile Dye removal by Adsorption on Olive Grain as Solid Waste from the Olive Oil Extraction. Asian J. Research Chem. 2020; 13(6):424-432. doi: 10.5958/0974-4150.2020.00077.2 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-6-4
REFERENCES:
1. Sauer T, Neto GC, Jose H, Moreira R. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry. 2002;149(1-3):147-54.
2. Karim A, Bougandoura R. La capacité d’adsorption de la zéolithe naturelle de type mordenite de tinebdar (Bejaia) d’un colorant basique (Bleu de méthylène): Université de Bouira; 2017.
3. Karthik K, Sudhkar B, Pranav PS, Sridevi V. Removal of crystal violet dye from aqueous solution through biosorption using Lysiloma latisilinquum seed powder: kinetics and isotherm. Int J Eng Res Tech. 2019;8: 493-7.
4. Yadav S, Tyagi D, Yadav O. An overview of effluent treatment for the removal of pollutant dyes. Asian Journal of Research in Chemistry. 2012;5(1):1-7.
5. Caldeira AS, Fabris JD, Nelson DL, Damasceno SM. Removal of textile dye by adsortion on the cake as solid waste from the press-extraction of the macaúba (Acrocomia aculeata) kernel oil. Eclética Química Journal. 2018;43(1):48-53.
6. Mukhlish MB, Khan MR, Islam M, Nazir M, Snigdha J, Akter R, et al. Decolorization of Reactive Dyes from Aqueous Solution Using Combined Coagulation-Flocculation and Photochemical Oxidation (UV/H₂O₂). Sustainable Chemical Engineering. 2020:51-61.
7. Popuri AK, Guttikonda P. Use of Agricultural Waste (Fly Ash) for Removal of Nickel Ions from Aqueous Solutions. Research Journal of Pharmacy and Technology. 2015;8(12):1665-8.
8. Benarima AEH, Kouadri MR. Préparation et caractérisation d’un charbon actif à partir de coquilles d’œufs: Université de Ouargla; 2017.
9. Haoued B. Biosorption d'un colorant en milieu aqueux sur différents déchet organiques: Université de Ouargla; 2017.
10. Dharmambal S, Mani N, Kannan D. Adsorption of Rhodamine–B Dye from the aqueous Solution by using Tectonagrandis Bark Powder. Asian Journal of Research in Chemistry. 2015;8(5):346-50.
11. Mouaziz S. Préparation et Caractérisation des bentonites modifiées par des sels de Bis-imidazolium–Application à l’adsorption du bleu Telon. 2012.
12. Mourad M, Mohamed MS, Omar B, Farida H, Khaled B. Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material. International Journal of Chemical and Molecular Engineering. 2018;12(7):309-13.
13. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of hazardous materials. 2009;162(2-3):616-45.
14. Dubey SS, Rao BS. Kinetic models in adsorption-a review. Asian Journal of Research in Chemistry. 2012;5(1):8-13.
15. Khelfaoui W, Garti W, Ikhlef T. Elimination par adsorption du colorant rouge Congo sur la bentonite sodique et la bentonite sodique modifiée: Université Abderrahmane Mira-Bejaia; 2016.
16. Zohra B. Activation des noyaux de jujube pour l’obtention d’un charbon actif: université de Mostaganem; 2018.
17. Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry. 2017;10: S1445-S51.
18. Mayeko AKK, Vesituluta PN, Di Phanzu JN, Muanda DMW, Bakambo GE, Lopaka BI, et al. Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l’acide phosphorique. International Journal of Biological and Chemical Sciences. 2012;6(3):1337-59.
19. Kifuani KM, Mayeko AKK, Vesituluta PN, Lopaka BI, Bakambo GE, Mavinga BM, et al. Adsorption d’un colorant basique, Bleu de Méthylène, en solution aqueuse, sur un bioadsorbant issu de déchets agricoles de Cucumeropsis mannii Naudin. International Journal of Biological and Chemical Sciences. 2018;12(1):558-75.
20. Benamraoui F. Élimination des colorants cationiques par des charbons actifs synthétisés à partir des résidus de l’agriculture: Université de Setif; 2018.
21. Kuang Y, Zhang X, Zhou S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water. 2020;12(2):587.
22. Yadav S, Tyagi D, Yadav O. The kinetic and equilibrium studies on adsorption of rhodamine-B dye from aqueous solution onto rice husk carbon. Asian Journal of Research in Chemistry. 2011;4(6):917-24.
23. Y. Seki KY. Adsorption, (98), P89-100 2006.
24. Faizal KM, Mani N, Dharmambal S, Ramalingam SJ, Nandhakumar V, Thirumurugan V. Decolourisation of Bismark Brown Dye in Aqueous Solution Using Activated Carbon of Musa paradisiaca Sheath Fibre. Asian Journal of Research in Chemistry. 2014;7(12):1053-8.
25. Nandi BK, Goswami A, Purkait MK. Adsorption characteristics of brilliant green dye on kaolin. Journal of hazardous materials. 2009;161(1):387-95.
26. Belazaizia K, Hazourli A. Adsorption du bleu de méthylène sur différents matériaux activés, en milieu aqueux. Université de Oum el bouaghi. 2018.
27. Baseri JR, Palanisamy P, Sivakumar P. Use of Activated Carbon of Thevetia peruviana wood for the Adsorption of Acid Violet Dye from Aqueous Solutions. Asian Journal of Research in Chemistry. 2012;5(4):456-61.
28. Aljeboree AM, Alkaim AF. Comparative removal of three textile dyes from aqueous solutions by adsorption: as a model (corn-cob source waste) of plants role in environmental enhancement. Plant Archives. 2019;19(1):1613-20.
29. Zhang W, Yan H, Li H, Jiang Z, Dong L, Kan X, et al. Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chemical Engineering Journal. 2011;168(3):1120-7.
30. Al-Anber ZA, Al-Anber MA, Matouq M, Al-Ayed O, Omari NM. Defatted Jojoba for the removal of methylene blue from aqueous solution: Thermodynamic and kinetic studies. Desalination. 2011;276(1):169-74.
31. Hameed BH. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. Journal of hazardous materials. 2009;162(1):344-50.
32. Zeghoud L, Gouamid M, Ben Mya O, Rebiai A, Saidi M. Adsorption of Methylene Blue Dye from Aqueous Solutions Using Two Different Parts of Palm Tree: Palm Frond Base and Palm Leaflets. Water, Air, & Soil Pollution. 2019;230(8):195.
33. Sivarajan A, Shanmugapriya V. Determination of isotherm parameters for the adsorption of Rhodamine B dye onto activated carbon prepared from Ziziphus jujuba seeds. Asian Journal of Research in Chemistry. 2017;10(3):362-8.
34. Sagar S, Rastogi A. Adsorptive Elimination of an Acidic Dye from Synthetic Wastewater using Yellow Green Algae along with Equilibrium Data Modelling. Asian Journal of Research in Chemistry. 2018;11(5):778-86.
35. Dhananjaneyulu B, Kumaraswamy K. Kinetic and thermodynamic studies on adsorption of malachite green from aqueous solution using mixed adsorbents (rice husk and egg shell). Research Journal of Pharmacy and Technology. 2016;9(10):1671-6.