Author(s):
Ali Boumeftah, Abdelkader Belmokhtar, Abdelghani Benyoucef
Email(s):
ali.boumeftah@univ-mascara.dz
DOI:
10.5958/0974-4150.2021.00012.2
Address:
Ali Boumeftah1*, Abdelkader Belmokhtar1, Abdelghani Benyoucef2
1Laboratoire Matériaux application et Environnement, Université Mustapha Stambouli de Mascara, Faculté des Sciences et de la Technologie, BP 763 Mascara 29000, Algérie.
2Laboratoire des Sciences et Techniques de l'Eau, Université Mustapha Stambouli de Mascara, Faculté des Sciences et de la Technologie, BP 763 Mascara 29000, Algérie.
*Corresponding Author
Published In:
Volume - 14,
Issue - 1,
Year - 2021
ABSTRACT:
This study describes the synthesis, characterization and properties of novel poly (4, 4-diaminodiphenyl sulphone) (PDDS) under effect of montmorillonite clay. The raw clay (called as Mag) was ion-exchanged with nickel nitrate and cobalt nitrate. The PDDS-Mag nanocomposites were prepared via in-situ emulsion polymerization process using ammonium persulfate as an oxidizing agent. Furthermore, the intercalation of PDDS into the clay layers were characterized and confirmed by chemical structure analysis using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectra and scanning electron microscopy (SEM). The thermogravimetric analysis (TGA) thermograms showed an enhancement of the thermal stability of PDDS nanocomposites. The cyclic voltammetry indicate that the PDDS-clay nanocomposites have a good electrochemical response where achieve the anodic and cathodic peak at 540 mV and 320 mV, respectively. Moreover, these results show that the new synthesized conductive nanocomposites are environmentally friendly materials that can be utilized in many fields.
Cite this article:
Ali Boumeftah, Abdelkader Belmokhtar, Abdelghani Benyoucef. Synthesis and characterization of new poly (4, 4-diaminodiphenyl sulphone)/clay modified nanocomposites. Asian J. Research Chem. 2021; 14(1):73-78. doi: 10.5958/0974-4150.2021.00012.2
Cite(Electronic):
Ali Boumeftah, Abdelkader Belmokhtar, Abdelghani Benyoucef. Synthesis and characterization of new poly (4, 4-diaminodiphenyl sulphone)/clay modified nanocomposites. Asian J. Research Chem. 2021; 14(1):73-78. doi: 10.5958/0974-4150.2021.00012.2 Available on: https://ajrconline.org/AbstractView.aspx?PID=2021-14-1-12
REFERENCES:
1. C.I. Awuzie, Conducting Polymers, Materials Today: Proceedings. 2017; 4(4): 5721-5726.
2. A.A. Baleg, M. Masikini, S.V. John, A.R. Williams, N. Jahed, P. Baker, E. Iwuoha, Conducting Polymers and Composites, Functional Polymers 2019, pp. 551-604.
3. M.H. Naveen, N.G. Gurudatt, Y.-B. Shim, Applications of conducting polymer composites to electrochemical sensors: A review, Applied Materials Today. 2017; 9: 419-433.
4. R. Bhadani, S. Bhadani, Cyclic Voltammetry Study of Thiophene Polymerization, Asian Journal of Research in Chemistry. 2013; 6(3): 241-243.
5. F. Ganjeizadeh Rohani, A. Mohadesi, M. Ansari, Electrochemical synthesis, characterization, and spectroelectrochemical evaluation of poly (para amino benzoic acid-co-4,4-diaminodiphenyl sulfone) film, Journal of Materials Science: Materials in Electronics. 2019; 30(9): 8686-8697.
6. P. Manisankar, C. Vedhi, G. Selvanathan, Synthesis and characterization of novel nano size electroactive poly 4,4-diaminodiphenyl sulphone, Journal of Polymer Science Part A: Polymer Chemistry. 2005; 43(8): 1702-1707.
7. A. Sanmugam, A.R. Jeyaraman, S. Venkatesan, Y. Anbalagan, D. Vikraman, Synthesis of novel poly 4,4′-diaminodiphenyl sulphone-Fe2O3 nanocomposites for better electrochemical capacitance, Ionics. 2016; 23(5): 1249-1257.
8. S.-R. Yun, K.M. Kim, J.M. Ko, Y. Kang, K.S. Ryu, Electrochemical properties of poly (4,4′-diaminodiphenyl sulfone) as a cathode material of lithium secondary batteries, Polymer Bulletin. 2013; 70(11): 3011-3018.
9. E. Jean Serge, J.P. Alla, P.D.B. Belibi, K.J. Mbadcam, N.N. Fathima, Clay/polymer nanocomposites as filler materials for leather, Journal of Cleaner Production. 2019; 237.
10. B.S. Dawane, S.S. Chobe, S.N. Kinkar, G.G. Mandawad, O.S. Yemul, R.D. Kamble, A.V. Shinde, Bleaching Earth Catalyzed Synthesis of Bis (Indolyl) Methane’s Derivatives in (Polyethylene Glycol) PEG-400, Research Journal of Science and Technology. 2011; 3(5): 251-256.
11. A. Kausar, Physical properties of hybrid polymer/clay composites, Hybrid Polymer Composite Materials. 2017, pp. 115-132.
12. N. Karak, Fundamentals of Nanomaterials and Polymer Nanocomposites, Nanomaterials and Polymer Nanocomposites 2019, pp. 1-45.
13. K.K. Kokate, S. Kulkarni, S.E. Bhandarkar, Synthesis, Characterization of PEDOT-Metal Oxides Nanocomposites and use of PEDOT-ZnO nanocomposite as the Photoanode in Dye sensitized solar cells (DSSC), Asian Journal of Research in Chemistry. 2018; 11(1): 91-102.
14. T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang, Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Applied Clay Science. 2019; 169: 48-66.
15. S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites, Progress in Polymer Science. 2008; 33(12): 1119-1198.
16. S.-L. Bee, M.A.A. Abdullah, S.-T. Bee, L.T. Sin, A.R. Rahmat, Polymer nanocomposites based on silylated-montmorillonite: A review, Progress in Polymer Science. 2018; 85: 57-82.
17. J. Dahiya, Phosphorylated epoxy nanocomposites: Study of structure and mechanical properties, Asian Journal of Research in Chemistry. 2017; 10(3): 319-323.
18. A. Al-Shahrani, I. Taie, A. Fihri, G. Alabedi, Polymer-Clay Nanocomposites for Corrosion Protection, Current Topics in the Utilization of Clay in Industrial and Medical Applications 2018.
19. P. Anadao, Polymer/ Clay Nanocomposites: Concepts, Researches, Applications and Trends for The Future, Nanocomposites - New Trends and Developments 2012.
20. Z. Cherifi, B. Boukoussa, A. Zaoui, M. Belbachir, R. Meghabar, Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization, Ultrason Sonochem. 2018; 48: 188-198.
21. S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Materials Science. 2019; 1(1): 2-30.
22. S. Monga, J. Dahiya, Effect of Ammonium Polyphosphate in Combination with Zinc Phosphate and Zinc Borate on Thermal Degradation and Flame Retardation of Polyamide 6/Clay Nanocomposites, Asian Journal of Research in Chemistry. 2015; 8(1): 39-45.
23. R. Babu Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese, An Overview of Polymer–Clay Nanocomposites, Clay-Polymer Nanocomposites 2017, pp. 29-81.
24. A. Belmokhtar, A. Benyoucef, A. Zehhaf, A. Yahiaoui, C. Quijada, E. Morallon, Studies on the conducting nanocomposite prepared by polymerization of 2-aminobenzoic acid with aniline from aqueous solutions in montmorillonite, Synthetic Metals. 2012; 162(21-22): 1864-1870.
25. J.H. Hassen, Montmorillonite Nanoclay Interaction with 2-Aminophenol and 2-Nitrophenol, Research Journal of Pharmacy and Technology.2019; 12(6): 2828-2831.
26. H. Soltani, A. Belmokhtar, F.Z. Zeggai, A. Benyoucef, S. Bousalem, K. Bachari, Copper (II) Removal from Aqueous Solutions by PANI-Clay Hybrid Material: Fabrication, Characterization, Adsorption and Kinetics Study, Journal of Inorganic and Organometallic Polymers and Materials. 2019; 29(3): 841-850.
27. D. Ouis, F.Z. Zeggai, A. Belmokhtar, A. Benyoucef, B. Meddah, K. Bachari, Role of p-Benzoquinone on Chemically Synthesized Nanocomposites by Polyaniline with V2O5 Nanoparticle, Journal of Inorganic and Organometallic Polymers and Materials. 2020.
28. S.Kalotra, R. Mehta, Synthesis of polyaniline/clay nanocomposites by in situ polymerization and its application for the removal of Acid Green 25 dye from wastewater, Polymer Bulletin. 2020.
29. U.U. Ozkose, C. Altinkok, O. Yilmaz, O. Alpturk, M.A. Tasdelen, In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization, European Polymer Journal. 2017; 88: 586-593.
30. A. Nasser, A. Pasupathy, R.S. Kumar, A. Idhayadhulla, Synthesis, Characterization and Electrochemical Behavior of Transition Metal (II) Complexes from 2, 6-Diphenyl-Piperidin-4-Thiosemicarbazone and their Antimicrobial Studies, Asian Journal of Research in Chemistry. 2010; 3(4): 1022-1026.
31. L.R. Varghese, N. Das, Application of gum based and clay based CuO/chitosan nanobiocomposite beads for the removal of nickel (II) from aqueous environments: Equilibrium, kinetic, thermodynamic and ex-situ studies, Research Journal of Pharmacy and Technology. (2017; 10(5): 1347-1359.
32. D. Ilangeswaran, P. Manisankar, Electrochemical synthesis, characterization and electrochromic behavior of poly (4-aminodiphenylamine-co-4,4′-diaminodiphenyl sulfone), Electrochimica Acta. 2013; 87: 895-904.
33. B. Vijayakumar, K.O. Anjana, G.R. Rao, Polyaniline/clay Nanocomposites: Preparation, Characterization and Electrochemical Properties, IOP Conference Series: Materials Science and Engineering. 2015; 73.
34. I. Khelifa, A. Belmokhtar, R. Berenguer, A. Benyoucef, E. Morallon, New poly (o-phenylenediamine)/modified-clay nanocomposites: A study on spectral, thermal, morphological and electrochemical characteristics, Journal of Molecular Structure. 2019; 1178: 327-332.
35. D. Ilangeswaran, G. Lakshmi, Chemical Synthesis and Characterization of Poly (phenylhydrazine-co-4,4′-diaminodiphenyl Sulphone), Chemical Science Transactions. 2015; 4(2): 620-628.
36. R. Parkavi, N.K.J. Lekha, K. Dinakaran, Ratiometric fluorescent detection and removal of cadmium ions from aqueous solution using Indole functionalized Polysulfone, Asian Journal of Research in Chemistry. 2020; 13(4): 255-260.
37. F.Z. Zeggai, A. Hachemaoui, A. Yahiaoui, Chemical Synthesis of Nanocomposites via Intercalative Polymerisation of 4-Aminobenzyl amine and Aniline using Exchanged Montmorillonite, Journal of Materials and Environmental Science. 2015; 6(8):2315-2321.
38. A.F. Baldissera, J.F. Souza, C.A. Ferreira, Synthesis of polyaniline/clay conducting nanocomposites, Synthetic Metals. 2013; 183: 69-72.
39. M. Sadiq, A. Aryab, A.L. Sharmab, Synthesis and characterizations (electrical and thermal stabilityproperties) of the blended polymer nanocomposites, Materials Today: Proceedings. 2019; 12: 605–613.
40. S. Ramesh, K. Punithamurthy, Synthesis, characterization and fire retardant properties of novel nanocomposite based on polyethylene vinyl acetate/polyurethane acrylate/clay, Materials Today: Proceedings. 2018; 5(2): 8933-8939.
41. A. Sanmugam, A.R. Jeyaraman, S. Venkatesan, M. Paramasivam, H.-S. Kim, D. Vikraman, A one-pot chemical route to prepare poly 4, 4′-diaminodiphenyl sulfone-zirconium dioxide/cerium dioxide hybrid nanocomposites for improved capacitance properties, Materials Letters. 2019; 249: 5-8.
42. M.M. Abutaliba, A. Rajehb, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite, Journal of Organometallic Chemistry. 2020; 918.
43. Z. Hoseini, M.M. Alavi Nikje, Synthesis and characterization of novel magnetic polyurethane nanocomposites based on 1,5-Naphthalene diisocyanate (NDI) containing Clay-Fe3O4@APTS nanoparticles, Materials Research Express. 2018; 6(1).
44. P.L. Reddy, K. Deshmukh, T. Kovářík, D. Reiger, N.A. Nambiraj, L. R, K.P. S K, Enhanced dielectric properties of green synthesized Nickel Sulphide (NiS) nanoparticles integrated polyvinylalcohol nanocomposites, Materials Research Express. 2020; 7(6).
45. P. Kumar, P. Singh, K. Pandey, V. Verma, V. Kumar, Poly (ether ether) ketone/poly (ether) imide nanocomposites, Asian Journal of Research in Chemistry. 2012; 5(6): 703-706.
46. F.F. Fang, Y.D. Liu, H.J. Choi, Synthesis and electrorheological characteristics of polyaniline/organoclay nanoparticles via Pickering emulsion polymerization, Smart Materials and Structures. 2010; 19(12).
47. A. Kumar, P. Singh, V. Verma, K. Pandey, V. Kumar, Studies of natural rubber/montmorillonite nanocomposites, Asian Journal of Research in Chemistry. 2012; 5(5): 623-627.