ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Sadok. Hadjadj, Afaf.Bouchaala, Noura. Mebrouki, Lazhar. Benmabrouk, Ahmed. Boutarfaia

Email(s): hadjadjsadok@gmail.com

DOI: 10.52711/0974-4150.2021.00059   

Address: Sadok. Hadjadj1*, Afaf.Bouchaala1, Noura. Mebrouki1, Lazhar. Benmabrouk1, Ahmed. Boutarfaia2
1Univ. Ouargla, Faculty of. Mathématics and Sciences of Matter. Lab Radiation, Plasmas and Surface Physics (LRPPS). Ouargla 30000, Algeria.
2 Univ M. Khider Biskra, Faculty of Exact Sciences and Sciences of Nature and Life. Lab, Applied Chemistry BP 145 RP، Biskra 07 000, Algeria.
*Corresponding Author

Published In:   Volume - 14,      Issue - 5,     Year - 2021


ABSTRACT:
Piezoelectricity is one of the renewable and clean electrical energy sources, as it is generated from materials specially manufactured for this purpose in proportions and scales called piezoelectric materials, that is, electricity resulting from mechanical work that produces the electric field, and this is known as the direct piezoelectric effect. An inverse mechanical effect can also be observed when an electric field is applied to the same piezoelectric material that deforms and returns to its original shape after the electric field is removed. In order to contribute to improving the properties of these materials that have been prepared from insulating ceramic materials having an equivalent formula: Pb0.975 La0.015 Nd0.01 [(Zr 0,524 Ti 0,476) 0.9875 -3/4 z Nb0.005 Crz]O3 abbreviated PLNZCNT (z = 0%, 0.5%, 0.75%, 1%, 1.25%, 1,5% and 2%). The formation of pure single-phase perovskite compounds of tetragonal symmetry for all samples was confirmed by X-ray diffraction (XRD) analyzes. The scanning electron micrographs show that the grains have melted, most of the separating walls have disappeared, and the average grain size has increased. Information about the effects of chromium concentration on the measured properties was obtained based on temperature and frequency measurements of the dielectric properties of PLNZNT ceramics, represented by an increase in Curie temperature with increasing Cr3+ concentration. The ferroelectric properties of materials are characterized by the presence of a polarization hysteresis cycle as a function of the applied electric field (P-E). To measure the piezoelectric and electromechanical properties at room temperature, was used by the standard resonance and anti-resonance method. It was found that the sample E2 (0.75%) sintered at 1200°C achieves excellent dielectric, ferroelectric and piezoelectric properties (??r=24394.51, tan d =0.072 and Tc = 378K). The values of saturated electric polarization (Ps=29.61 µC/cm²), remnant electric polarization (Pr=24.63 µC/cm²) and coercive electric field (Ec=0.905kV/mm), as well as piezoelectric charge coefficient (d33 = 435 pC/N) for sample E2 (0.75%).


Cite this article:
Sadok. Hadjadj, Afaf.Bouchaala, Noura. Mebrouki, Lazhar. Benmabrouk, Ahmed. Boutarfaia. Effect of chromium substitution on the dielectric, ferroelectric and piezoelectric properties of PLNZNT ceramics (P=Pb2+, L=La3+, N=Nd3+, Z=Zr4+, N=Nb5+, T=Ti4+). Asian Journal of Research in Chemistry. 2021; 14(5):345-2. doi: 10.52711/0974-4150.2021.00059

Cite(Electronic):
Sadok. Hadjadj, Afaf.Bouchaala, Noura. Mebrouki, Lazhar. Benmabrouk, Ahmed. Boutarfaia. Effect of chromium substitution on the dielectric, ferroelectric and piezoelectric properties of PLNZNT ceramics (P=Pb2+, L=La3+, N=Nd3+, Z=Zr4+, N=Nb5+, T=Ti4+). Asian Journal of Research in Chemistry. 2021; 14(5):345-2. doi: 10.52711/0974-4150.2021.00059   Available on: https://ajrconline.org/AbstractView.aspx?PID=2021-14-5-8


REFERENCES:
1.    Anand G. Chowdary G. Harsha V. Piezoelectricity: Harnessing energy from footsteps. Research Journal of Science and Technology 2020; 12(4): 267- 276 doi: 10.5958/2349-2988.2020.00036.4.
2.    Anita D. Thakur J. Sharma N. Generalized Piezothermoelastic Continuum Subjected To Temperature Input. Research J. Science and Technology. Jan.-Mar.2013; 5(1): 207-212. doi: Not Available.
3.    Dzamaklu B. Yaw E. Kankam N. Kojo B. Lord AT. Abigail M. Alfred KE. Using Piezoelectricity for Power Generation to support high utilization of power at University Campuses. Research J. Engineering and Technologie. 2020;11(4):197-204. doi: 10.5958/2321-581X.2020.00030.6
4.    Marshiana D. Elizabeth SM. Sunitha N. Vinothkumar C. Footstep Power production using Piezoelectric Sensors. Research Journal Engineering and Technologie. 2016; 9(7): 831-834. doi: 10.5958/0974-360X.2016.00157.8.
5.    Samuel PS. Ratna K. Generate Electricity from Hybrid Road Speed Breaker. Research J. Engineering and Tech. 2017; 8(4):351-355. doi: 10.5958/2321-581X.2017.00061.7
6.    Haertling GH: PLZT electrooptic materials and applications - a review, Ferroelectrics. 1987; 75(1): 25-55. doi.org / 10.1080/00150198708008208.
7.    Lines ME. Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Physics Today 31, 9, 56 (1978). doi.org /10.1063 /1.2995188.
8.    Dai X. Xu Z. Li JF. and al. Effects of lanthanum modification on rhombohedral Pb (Zr1−x Tix) O3 ceramics: Part I. Transformation from normal to relaxor ferroelectric behaviors. Journal of Materials Research. 1996;11(3): 618–625 (1996). doi.org /10.1557/ JMR.1996.0075.
9.    Gupta SM. JF Li. Viehland D. Coexistence of Relaxor and Normal Ferroelectric Phases in Morphotropic Phase Boundary Compositions of Lanthanum-Modified Lead Zirconate Titanate. Journal of the American Ceramic Society. 2005; 81(3): 557-564. doi.org/10.1111/j.1151-2916.1998.tb02374.x.
10.    Stenger C. G F. Burggraaf AJ. Study of phase transitions and properties of tetragonal (Pb, La) (Zr, Ti)O3 ceramics-I. Journal of Physics and Chemistry of Solids. 1980; 41(1):17-23. doi.org /10.1016 /0022-3697(80)90114-6.
11.    Lu S. Xu Z. Zuo R. Comparative study of the effect of domain structures on piezoelectric properties in three typical Pb-free piezoceramics. Ceramics International. 2014; 40(8), 13565–13571. doi.org/10.1016 /j.ceram int .2014.05.070.
12.    ATKIN R. HOLMAN B. R L. FULRATH RM. Substitution of Bi and Nb Ions in Lead Zirconate-Titanate. Journal of the American Ceramic Society.1971; 54(2): 113–115. doi.org/10.1111/j.1151-2916.1971.tb12231.x.
13.    Rukmini HR. Choudhary RNP. Rao VV. Effect of doping pairs (La, Na) on structural and electrical properties of PZT ceramics. Materials Chemistry and Physics. 1998; 55(2): 108–114. doi.org /10.1016/s0254-0584(98)00144-8.
14.    Selvamani R. Singh G., Sinha AK. Tiwari VS. Oxidation state of chromium in (Na0.5Bi0.5TiO3)(1−x)(BiCrO3) x solid solution; investigated by XAS and impedance spectroscopy. Journal of Materials Science.2011; 47(4): 2011–2015. doi.org/10.1007/s10853-011-5999-1.
15.    Izadkhah B. Niaei A. Salari D. Hosseinpoor S. Hosseini SA. Tarjomannejad A. (2016). Catalytic removal of CO and NOx using sol-gel synthesized LaB0.5Co0.5 O3 (B = Cr, Mn and Cu) and LaMnx Co1-x O3 nano-perovskites. Korean Journal of Chemical Engineering.2016; 33(4): 1192–1199. doi.org /10.1007/s11814-015-0254-0.
16.    Ramam K. Lopez M. Dielectric, ferroelectric and piezoelectric studies of neodymium-modified PLZNT ceramics for sensor and actuator applications. Journal of Alloys and Compounds. 2008; 466(1-2): 398–403. doi.org/10.1016/j.jallcom.2007.11. 055.
17.    Wan T. Qu B. Du H.Lin X. Guan P. Lin Q. Chu D. (2017). Tunable resistance switching in solution processed chromium-doped strontium titanate nanoparticles films. Journal of Colloid and Interface Science.2017; 494: 178–184. doi.org/10.1016/j.jcis. 2017. 01.095.
18.    Hadjadj S. Boutarfaia A. Zenkhri L. Structural and dielectric study of a PLNZNT ceramic material doped with chromium. Annales de Chimie: Science des Materiaux. 2019; 43(2): 69-74. doi.org/10.18280/acsm.
19.    Benamor L. Boutarfaia A, Zenkhri L, Bentouila O, Khelassi A, Kribaa OK, Zenkhri S. Simultaneous Spectrophotometric Estimation of A Structural and Electrical Properties of A Doped Ferroelectric Ceramics Type PFN–PNN–PZT. Asian J. Research Chem. 2019; 12(3):182-186. doi: 10.5958/0974-4150.2019.00035.x.
20.    Hadjadj S. Thèse de Magister, Université deK. M-Ouargla, (2012).
21.    Singh SK. Verma A. Shukla RK. Dubey KC. Strength of Dielectric constant of CuO doped Polyaniline. Asian J. Research Chem. 2018; 11(1):61-64. doi: 10.5958/0974-4150.2018.00013.5
22.    Mohiddon MA. Yadav KL. (2007). Structural and dielectric properties of (Li0.5Na0.5) doped strontium barium niobate. Journal of Applied Physics. 2007;101(9): 094101. doi.org/10.1063/1.2720261.
23.    Dai X. Xu Z. Viehland D. Long-Time Relaxation from Relaxor to Normal Ferroelectric States in Pb0.91 La0.06 (Zr0.65 Ti0.35 O3. Journal of the American Ceramic Society. 1996; 79(7): 1957–1960. doi.org/10.1111/j.1151-2916.1996.tb08019.x.
24.    Pilgrim SM. Sutherland AE. Winzer SR. Diffuseness as a Useful Parameter for Relaxor Ceramics. Journal of the American Ceramic Society.1990; 73(10), 3122–3125. doi.org/10.1111/j.1151-2916.1990.tb06733.x.
25.    Hanuman N. Thorat, Anita G. Murugkar. Dielectric Analysis of Binary Mixtures of Propylparaben in Methanol at 303.15K. Asian J. Research Chem. 2019; 12(1): 29-31. doi: 10.5958/0974-4150.2019.00007.5.
26.    Subramanian M. Parthipan G. Relaxation Analysis on Liquid Mixture of Ethylene Glycol / Diethylene Glycol and Benzonitrile in Benzene. Research J. Pharm. and Tech. 2018; 11(2):761-765. doi: 10.5958/0974-360X.2018.00143.9.
27.    Narender A. Sathaia G. Dielectric Relaxation Behaviour and AC Conductivity of Vinylpropionate and Ethylmethacrylate (VP-EMA) copolymers. Asian J. Research Chem.2012; 5(2): 187-190.
28.    Rai R. Sharma S. Soni NC and al., Investigation of structural and dielectric properties of(La, Fe)-doped PZT ceramics. Physica B 2006; 382(1–2): 252–256. doi.org/10.1016/j.physb.2006.02.024.
29.    Zhang QM. Wang H. Kim N. Cross LE. Direct evaluation of domain‐wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate‐titanate ceramics. Journal of Applied Physics. 1994; 75(1): 454–459. doi.org/10.1063/1.355874.
30.    Li HL. Zhang Y. Zhou JJ. Zhang XW. Liu H. Fang JZ. (2015). Phase structure and electrical properties of xPZN-(1−x) PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceramics International.2015; 41(3): 4822–4828. doi:10.1016/j.ceramint.2014.12.038.
31.    Shirish D. Kamat SD. Gangavane SA. Fulari VJ. Electric and Dielectric Bahaviour of PbZr0.6 Ti0.4O3 and PbSr0.6Ti0.4O3 Ceramics. Asian Journal of Research in Chemistry, 2010; 3(3): 611-615.
32.    Zhang Y. Xie M. Roscow J. Bao Y. Zhou K. Zhang D. Bowen CR. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A. 2017; 5(14): 6569–6580. doi.org/10.1039/c7ta00967d.
33.    Rachna S. Gurvinderjit S. Tiwar VS. Karnal AK. Dielectric and piezoelectric properties of Cr2O3-doped PLZT (7/65/35) hot pressed ceramics. 2018; S2352-4928(17): 30338-0. doi.org/10.1016/j.mtcomm.2018.03.002.
34.    Bajpai KK. Sreenivas K. Gupta AK. Shukla AK. Cr-doped lead lanthanum zirconate titanate (PLZT) ceramics for pyroelectric and energy harvesting device applications. Ceramics International. 2019; 45: 14111-14120. doi.org/10.1016/j. ceramint. 2019. 04. 111.
35.    Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics.1998; 61(9): 1267–1324. doi.org/10.1088/0034-4885/61/9/ 002.

Recomonded Articles:

Author(s): M. Yadav, Sushil Kumar, Abu Nasar, Sunil Kumar

DOI:         Access: Open Access Read More

Author(s): N. Kasthuri, R. Saratha, R. Meenakshi, H.N. Meenakshi

DOI:         Access: Open Access Read More

Author(s): C.V. Deepaa, V.G. Vasudha, T. Sathiyapriya

DOI:         Access: Open Access Read More

Author(s): R Saratha, P Thilagavathy, N Kasthuri

DOI:         Access: Open Access Read More

Author(s): M. Sherin Banu, V. Raj, M. Mubarak Ali

DOI:         Access: Open Access Read More

Author(s): T. Deepa, C. Thangavelu, M. Sekar, R. Sudhakaran

DOI: 10.5958/0974-4150.2015.00097.8         Access: Open Access Read More

Author(s): Messaoud Gouamid, Louiza Zenkhri, Soufiane Benhamida, Elyacout Chebouat, Khaled Charradi

DOI: 10.5958/0974-4150.2019.00055.5         Access: Open Access Read More

Author(s): M. Umarani, T. Kasilingam and C. Thangavelu,

DOI: 10.5958/0974-4150.2018.00103.7         Access: Open Access Read More

Author(s): Deepali Gharge, Pallavi Salve, Chandrakant Raut, Kundan Pawar, Pandurang Dhabale

DOI:         Access: Open Access Read More

Author(s): M. Yadav, Usha Sharma

DOI:         Access: Open Access Read More

Author(s): R. Sudhakaran, C. Thangavelu, M. Sekar, T. Kasilingam

DOI: 10.5958/0974-4150.2015.00004.8         Access: Open Access Read More

Author(s): S. Ananth Kumar, A. Sankar, S. Ramesh Kumar, M. Vijayan

DOI:         Access: Open Access Read More

Author(s): S. Ananth Kumar, A. Sankar, S. Ramesh Kumar, M. Vijayan

DOI:         Access: Open Access Read More

Author(s): T. Deepa, C. Thangavelu, M. Sekar, R. Sudhakaran

DOI: 10.5958/0974-4150.2015.00097.8         Access: Open Access Read More

Author(s): N. Latha, V. Raj

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags