ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Sweety Monga, Meera, Satyender Kumar

Email(s): sw.chemistry@gmail.com

DOI: 10.52711/0974-4150.2025.00060   

Address: Sweety Monga1*, Meera1, Satyender Kumar2
1Department of Chemistry, Government College, Hisar - 125001, Haryana, India.
2Department of Chemistry, Government College for Women, Hisar - 125001, Haryana, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
The assessment of thermal and flammability behaviour plays a crucial role in determining the safety, stability, and performance of materials across various applications. This review explores the main techniques used to assess both thermal behaviour and flammability of materials. Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Differential Scanning Calorimetry (DSC) are extensively used to investigate material behaviour under controlled heating conditions. These methods offer insights into thermal decomposition, phase transitions, and energy changes associated with physical or chemical transformations. In addition, the review covers standard flammability test methods, including the Limiting Oxygen Index (LOI), UL-94 vertical burning test, and cone calorimeter test. The LOI and UL-94 tests are often used for quick screening and material classification based on their ignition and self-extinguishing characteristics. The Cone calorimeter test provides more detailed quantitative data such as heat release rate, ignition time, mass loss, and smoke production under well-ventilated conditions that simulates real fire conditions. Each test method offers distinct advantages and limitations depending on the specific fire scenario or thermal evaluation required. Systematic comparison of these techniques is presented to highlight their relevance, accuracy, and applicability to real-world conditions. The aim is to support researchers and engineers in selecting appropriate testing practices for material development, quality control, and compliance with fire safety standards. By integrating findings from the literature, this review contributes to a good understanding of how analytical and flammability tests complement each other in the comprehensive assessment of material behaviour under thermal and fire exposure.


Cite this article:
Sweety Monga, Meera, Satyender Kumar. A Comprehensive Review on Techniques to Assess Thermal and Flammability behaviour of Materials. Asian Journal of Research in Chemistry. 2025; 18(6):392-0. doi: 10.52711/0974-4150.2025.00060

Cite(Electronic):
Sweety Monga, Meera, Satyender Kumar. A Comprehensive Review on Techniques to Assess Thermal and Flammability behaviour of Materials. Asian Journal of Research in Chemistry. 2025; 18(6):392-0. doi: 10.52711/0974-4150.2025.00060   Available on: https://ajrconline.org/AbstractView.aspx?PID=2025-18-6-5


5. REFERENCES:
1.    Horrocks AR, Price D, Price D. Fire Retardant Materials. woodhead Publishing; 2001. Accessed July 26, 2025. https://books.google.com/books?hl=en&lr=&id=p6fackG2YwoC&oi=fnd&pg=PR11&dq=%E2%80%A2%09Kandola,+B.+K.,+Horrocks,+A.+R.,+%26+Price,+D.+Fire+Retardant+Materials+&ots=cmjeZ1k_Zx&sig=cA5xvtJ114oiyMB24t-ckReKEDY
2.    Morgan AB, Bundy M. Cone calorimeter analysis of UL‐94 V‐rated plastics. Fire Mater. 2007; 31(4): 257-283. doi:10.1002/fam.937
3.    Guillaume E. Flame retardant selection and regulations. In: Flame Retardant Selection for Polymers. Elsevier; 2025: 289-322. Accessed July 28, 2025. https://www.sciencedirect.com/science/article/pii/B9780443222474000033
4.    Vahabi H, Michely L, Moradkhani G, et al. Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites. Materials. 2019; 12(14): 2239. doi:10.3390/ma12142239
5.    Wunderlich B. Thermal analysis of macromolecules: a personal review. J Therm Anal Calorim. 2007; 89(2): 321-356. Accessed July 26, 2025. https://akjournals.com/view/journals/10973/89/2/article-p321.xml
6.    Blanco I, Siracusa V. The Use of Thermal Techniques in the Characterization of Bio-Sourced Polymers. Materials. 2021; 14(7): 1686. doi:10.3390/ma14071686
7.    Brown ME, ed. Reaction Kinetics from Thermal Analysis. In: Introduction to Thermal Analysis. Vol 1. Hot Topics in Thermal Analysis and Calorimetry. Kluwer Academic Publishers; 2004: 181-214. doi:10.1007/0-306-48404-8_10
8.    Borucka M, Mizera K, Przybysz J, Kozikowski P, Gajek A. Analysis of Flammability and Smoke Emission of Plastic Materials Used in Construction and Transport. Materials. 2023; 16(6): 2444. doi:10.3390/ma16062444
9.    Levchik SV, Weil ED. A Review of Recent Progress in Phosphorus-based Flame Retardants. J Fire Sci. 2006; 24(5): 345-364. doi:10.1177/0734904106068426
10.    Ogabi R, Manescau B, Chetehouna K, Gascoin N. A Study of Thermal Degradation and Fire Behaviour of Polymer Composites and Their Gaseous Emission Assessment. Energies. 2021; 14(21): 7070. doi:10.3390/en14217070
11.    UL O. 94-tests for flammability of plastic materials for parts in devices and appliances. Underwrit Lab Inc. Published online 1996.
12.    Patel RD, Raval MK. Differential scanning calorimetry: A screening tool for the development of diacerein eutectics. Results Chem. 2022; 4: 100315. Accessed July 27, 2025. https://www.sciencedirect.com/science/article/pii/S2211715622000340
13.    Loft BC. Applications of thermal analysis to polymers. J Polym Sci Polym Symp. 1975; 49(1): 127-139. doi:10.1002/polc.5070490113
14.    Soni RK, Teotia M, Sharma A. Cone Calorimetry in Fire-Resistant. Appl Calorim. Published online 2022:97. Accessed July 28, 2025. https://books.google.co.in/books?hl=en&lr=&id=Ail4EAAAQBAJ&oi=fnd&pg=PA97&dq=Review+on+tGA+DTA+DSC+UL+94+cone+calorimetry+LOI&ots=voR-ElJ4bK&sig=BGPU5SOVpIrnq97DJ6PMqXsmmRw
15.    Schartel B, Hull TR. Development of fire‐retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007; 31(5): 327-354. doi:10.1002/fam.949
16.    Monga S, Dahiya JB. Effect of Ammonium Polyphosphate in Combination with Zinc Phosphate and Zinc Borate on Thermal Degradation and Flame Retardation of Polyamide 6/Clay Nanocomposites. Asian J Res Chem. 2015; 8(1): 39-45. Accessed July 31, 2025. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=8&issue=1&article=009
17.    Monga S, Dahiya JB. Kinetic study of non-isothermal degradation of PA6 composites containing flame retardant additives. Asian J Res Chem. 2015;8(11):683-689. Accessed July 31, 2025. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=8&issue=11&article=005
18.    Dahiya JB, Kumar K. Nanoclay as Thermal Barrier in Coating Intumescent Formulations for Flame Retardant Cotton Fabric. Asian J Res Chem. 2010; 3(4): 1007-1010. Accessed July 31, 2025. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=3&issue=4&article=045
19.    Kumar K, Dahiya JB. Flame Retarding and Thermal Degradation Study of Intumescent Coated Cotton. Asian J Res Chem. 2010;3(4):911-915. Accessed July 31, 2025. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=3&issue=4&article=022
20.    Nehra S, Dahiya JB, Kumar S. Effect of nanoclays on thermal and flame retardant properties of intumescent coated cotton fabric. Asian J Res Chem. 2013; 6(7): 676-682. Accessed July 31, 2025. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=6&issue=7&article=015
21.    Priyanka, Dahiya JB. Phosphorylated epoxy nanocomposites: Study of structure and mechanical properties. Asian J Res Chem. 2017; 10(3): 319. doi:10.5958/0974-4150.2017.00053.0
22.    Shubha, Dahiya JB. Effect of Surfactants on Coating of Phosphorus-Containing Polymeric Film on Cotton Fabric and Study of Flammability Behaviour. Asian J Res Chem. 2017; 10(5): 680. doi:10.5958/0974-4150.2017.00115.8
23.    Dinesh Sirohi, Pratibha Singh, K. N. Pandey, Vishal Verma, Vijai Kumar, A. K. Saxena. Thermal and morphological behavior of PEEK/PEI blends with polyphosphazene coated carbon nanotube. Asian J Res Chem. 2012; 5(5): 650-654. Accessed August 15, 2025. https://scispace.com/papers/thermal-and-morphological-behavior-of-peek-pei-blends-with-21jmn2d0yv
24.    Murhakar GH, Raut AR. Thermal Study of Modified Polyvinyl Alcohol Conjugates and Doped Modified Polyvinyl Alcohol Conjugates. Asian J Res Chem. 2014;7(11):925-928.
25.    Reddy MJ, Reddy MR, Subrahmanyam AR, Reddy MM, Raor ASS. Effect of LiClO4 Concentration on Structural, morphological and Thermal Properties of PMMA and PEO Polymer Blends. Asian J Res Chem. 2018; 11(2): 463. doi:10.5958/0974-4150.2018.00084.6
26.    Haq ZU, Khattak AK, Khan Z, Khan FU, Ather A, Khan SU. Thermal gravimetric analysis of fiber glass. Asian J Res Chem. 2016; 9(1): 22. doi:10.5958/0974-4150.2016.00004.3
27.    Gopalakrishnan S, Sujatha R. Studies on Bio-Based Polyurethanes-Thermal and Mechanical Properties. Asian J Res Chem. 2011; 4(2): 322-328.
28.    Hatakeyama T, Quinn F i. Thermal Analysis: Fundamentals and Applications to Polymer Science. [sl]; 1999. Accessed July 26, 2025. http://www.dl.iranchembook.ir/ebook/polymer-1916.pdf
29.    Saiter JM, Negahban M, Claro P dos S, Delabare P, Garda MR. Quantitative and Transient DSC Measurements. I.–Heat Capacity and Glass Transition. J Mater Educ. 2008;30(1):51.
30.    Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem. 2009; 395(6): 1589-1611. doi:10.1007/s00216-009-3169-y
31.    Morgan AB, Wilkie CA. Flame Retardant Polymer Nanocomposites. John Wiley & Sons; 2007. Accessed July 26, 2025. https://books.google.com/books?hl=en&lr=&id=LAmOb4p8IwIC&oi=fnd&pg=PR5&dq=Morgan,+A.B.,+%26+Wilkie,+C.A.+(2007).+Flame+Retardant+Polymer+Nanocomposites.+Wiley.&ots=iZNH9JqiWy&sig=c6yL0ksE3ZOz-9HyxHebwyb5v0U
32.    Camino G, Costa L, Casorati E, Bertelli G, Locatelli R. The oxygen index method in fire retardance studies of polymeric materials. J Appl Polym Sci. 1988; 35(7): 1863-1876. doi:10.1002/app.1988.070350712
33.    Weil ED, Patel NG, Said MM, Hirschler MM, Shakir S. Oxygen index: Correlations to other fire tests. Fire Mater. 1992;16(4):159-167. doi:10.1002/fam.810160402
34.    Gold C. UL-94-test for flammability of plastic materials for parts in devices and appliances. Wash Tech Notes. Published online 2006. Accessed July 26, 2025. http://cdn.lairdtech.com/home/brandworld/files/EMI%20UL-94%20Test%20for%20Flammability%20of%20Plastic%20Materials%20for%20Parts%20in%20Devices%20and%20Appliances%20Technical%20Note%20Download.pdf
35.    ISO 4589-1:2017(en), Plastics — Determination of burning behaviour by oxygen index — Part 1: General requirements. Accessed July 26, 2025. https://www.iso.org/obp/ui/#iso:std:iso:4589:-1:ed-2:v1:en
36.    Fenimore CP, Martin FJ. Candle-type test for flammability of polymers. Mod Plast. 1966;44(3):141-148. Accessed July 26, 2025. https://firedoc.nist.gov/article/QHcyXYQBWEcjUZEYF0eP
37.    Babrauskas V. Development of the cone calorimeter, a bench scale heat release rate apparatus based on oxygen consumption. NASA STIRecon Tech Rep N. 1982; 83:29673. Accessed July 25, 2025. https://ui.adsabs.harvard.edu/abs/1982STIN...8329673B/abstract
38.    Lyon R, Walters R, Stoliarov S. Thermal analysis of flammability. J Therm Anal Calorim. 2007; 89(2): 441-448. Accessed July 26, 2025. https://akjournals.com/view/journals/10973/89/2/article-p441.xml
39.    Dodd JW, Tonge KH, King JM. Thermal methods (Analytical chemistry by open learning). Anal Chim Acta. 1989; 221:370-370.
40.    Aguirresarobe RH, Irusta L, Fernandez-Berridi MJ. Application of TGA/FTIR to the study of the thermal degradation mechanism of silanized poly (ether-urethanes). Polym Degrad Stab. 2012; 97(9): 1671-1679. Accessed July 26, 2025. https://www.sciencedirect.com/science/article/pii/S0141391012002340
41.    Zainal NFA, Saiter JM, Halim SIA, Lucas R, Chan CH. Thermal analysis: basic concept of differential scanning calorimetry and thermogravimetry for beginners. Chem Teach Int. 2021; 3(2): 59-75. doi:10.1515/cti-2020-0010
42.    Hatakeyama T, Quinn F i. Thermal Analysis: Fundamentals and Applications to Polymer Science. [sl]; 1999. Accessed July 26, 2025. http://www.dl.iranchembook.ir/ebook/polymer-1916.pdf
43.    Ng HM, Saidi NM, Omar FS, Ramesh K, Ramesh S, Bashir S. Thermogravimetric Analysis of Polymers. In: Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Ltd; 2018:1-29. doi:10.1002/0471440264.pst667
44.    Apaydın Varol E, Mutlu Ü. TGA-FTIR analysis of biomass samples based on the thermal decomposition behavior of hemicellulose, cellulose, and lignin. Energies. 2023; 16(9): 3674. Accessed July 26, 2025. https://www.mdpi.com/1996-1073/16/9/3674
45.    Risoluti R, Fabiano MA, Gullifa G, Vecchio Ciprioti S, Materazzi S. FTIR-evolved gas analysis in recent thermoanalytical investigations. Appl Spectrosc Rev. 2017; 52(1): 39-72. doi:10.1080/05704928.2016.1207658
46.    Keavney JJ, Eberlin EC. The determination of glass transition temperatures by differential thermal analysis. J Appl Polym Sci. 1960; 3(7): 47-53. doi:10.1002/app.1960.070030706
47.    Thermal Analysis Tools. In: Thermal Analysis of Polymeric Materials. Springer-Verlag; 2005: 279-454. doi:10.1007/3-540-26360-8_4
48.    Höhne GWH, Hemminger WF, Flammersheim HJ. Applications of Differential Scanning Calorimetry. In: Differential Scanning Calorimetry. Springer Berlin Heidelberg; 2003:147-244. doi:10.1007/978-3-662-06710-9_6
49.    Höhne GWH, Hemminger WF, Flammersheim HJ. Theoretical Fundamentals of Differential Scanning Calorimeters. In: Differential Scanning Calorimetry. Springer Berlin Heidelberg; 2003: 31-63. doi:10.1007/978-3-662-06710-9_3
50.    Coquelle M, Duquesne S, Casetta M, et al. Flame retardancy of PA6 using a guanidine sulfamate/melamine polyphosphate mixture. Polymers. 2015; 7(2): 316-332. Accessed July 26, 2025. https://www.mdpi.com/2073-4360/7/2/316
51.    Dupretz R, Fontaine G, Duquesne S, Bourbigot S. Instrumentation of UL‐94 test: understanding of mechanisms involved in fire retardancy of polymers. Polym Adv Technol. 2015; 26(7): 865-873. doi:10.1002/pat.3507
52.    LLC U. UL 94–Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. Published online 2013.
53.    Willstrand O, Pushp M, Ingason H, Brandell D. Uncertainties in the use of oxygen consumption calorimetry for heat release measurements in lithium-ion battery fires. Fire Saf J. 2024; 143: 104078. doi:10.1016/j.firesaf.2023.104078
54.    Wang Y, Zhang J, Jow J, Su K. Analysis and Modeling of Ignitability of Polymers in the UL-94 Vertical Burning Test Condition. J Fire Sci. 2009; 27(6): 561-581. doi:10.1177/0734904109099999

Recomonded Articles:

Author(s): Prathima Patil, S.P. Sethy, T. Sameena, K. Shailaja

DOI:         Access: Open Access Read More

Author(s): U. Sahoo, S. Biswal, S. Sethy, H.K.S. Kumar, M. Banerjee

DOI:         Access: Open Access Read More

Author(s): C.Balamurugan, L. Leena Hebsibai

DOI:         Access: Open Access Read More

Author(s): G. Muhubhupathi, M. Selvakumar, K. Mohanapriya, T. Brindha, B. Brindha Sri, Y. Mahalakshmi, P. Gayathri

DOI: 10.52711/0974-4150.2025.00008         Access: Closed Access Read More

Author(s): Tripti Jain, V Jain, R Pandey, A Vyas, S Gandhi, SS Shukla

DOI:         Access: Open Access Read More

Author(s): Alka Verma, Bhupesh Verma, Sunil Kumar Prajapati, Kishu Tripathi

DOI:         Access: Open Access Read More

Author(s): Chittaranjan Bhanja, Satyaban Jena

DOI:         Access: Open Access Read More

Author(s): Tauseef Shaikh, Atar Mujum , Khan Wasimuzzama, Rukhsana A Rub

DOI:         Access: Open Access Read More

Author(s): A. Anita, A. Malar Retna, J. Joseph

DOI: 10.5958/0974-4150.2018.00019.6         Access: Open Access Read More

Author(s): Naik YK, Khare A, Choudhary PL, Goel BK, Shrivastava A

DOI:         Access: Open Access Read More

Author(s): A. K. Meena, A. K. Mangal, M. M. Rao, P. Panda, G. V. Simha, S. K. Shakya, M. M. Padhi, Ramesh Babu

DOI:         Access: Open Access Read More

Author(s): Gopalasatheeskumar K, Ariharasiva Kumar G, Sengottuvel T, Sanish Devan V, Srividhya V

DOI: 10.5958/0974-4150.2019.00062.2         Access: Open Access Read More

Author(s): Jeevan Jyoti Mohindru, Umesh Kumar Garg, Rajni Gupta

DOI: 10.5958/0974-4150.2017.00069.4         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 


Recent Articles




Tags