Author(s):
Shailja Singh, Navneet Kumar
Email(s):
navkchem@gmail.com
DOI:
10.52711/0974-4150.2026.00008
Address:
Shailja Singh1, Navneet Kumar2*
1,2Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Moradabad - 244001, Uttar Pradesh, India.
*Corresponding Author
Published In:
Volume - 19,
Issue - 1,
Year - 2026
ABSTRACT:
Zeolites have crystalline, hydrated aluminosilicates made up of three-dimensional silicate and aluminum tetrahedra frameworks joined by shared oxygen atoms. They are used in a variety of industrial applications to separate and sort molecules based on their crystalline size dimensions, including adsorbents, catalysts, ion exchangers, as well as molecular sieves. Zeolite materials are becoming increasingly valuable in a range of biomedical applications, including drug delivery systems, wound healing, scaffolds in tissue engineering, antibacterial as well as antimicrobial applications, implant coatings, contrast agents, removal of harmful ions from the body, gas absorption, hemodialysis, and tooth root filling, due to their exceptional chemical and physical properties, including their porosity, ion exchange capacity, water absorption, immunomodulatory as well as antioxidative qualities, biocompatibility, as well as long-lasting chemical and biological stability. The review paper highlights the biomaterial features of zeolites and explores the most recent developments in their applications in biomedical domains, specifically in tissue engineering, drug transport, as well as regenerative medicine.
Cite this article:
Shailja Singh, Navneet Kumar. Utilizing Zeolite materials in Biomedical applications. Asian Journal of Research in Chemistry. 2026; 19(1):38-2. doi: 10.52711/0974-4150.2026.00008
Cite(Electronic):
Shailja Singh, Navneet Kumar. Utilizing Zeolite materials in Biomedical applications. Asian Journal of Research in Chemistry. 2026; 19(1):38-2. doi: 10.52711/0974-4150.2026.00008 Available on: https://ajrconline.org/AbstractView.aspx?PID=2026-19-1-8
5. REFERENCES:
1. Rodríguez-Fuentes, G., Barrios, M. A., Iraizoz, A., Perdomo, I., and Cedré, B. Zeolite Research and Scientific Papers on Clinoptilolite. Zeolites. 1997; 19(5-6): 441-448.
2. Baerlocher, C., McCusker, L. B., and Olson, D. H. (2007). Atlas of zeolite framework types. Elsevier.
3. Nejati-Koshki, K., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Ebrahimi-Kalan, A., Mortazavi, Y., and Zarghami, N. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Development and Industrial Pharmacy. 2017; 43(12): 1978-1988.
4. Mohammadian, F., Pilehvar-Soltanahmadi, Y., Zarghami, F., Akbarzadeh, A., and Zarghami, N. (). Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artificial Cells, Nanomedicine, and Biotechnology. 2017; 45(6): 1201-1206.
5. Sadeghi, S., Haghighi, M., and Estifaee, P. Methanol to clean gasoline over nanostructured CuO–ZnO/HZSM-5 catalyst: Influence of conventional and ultrasound assisted co-impregnation synthesis on catalytic properties and performance. Journal of Natural Gas Science and Engineering. 2015; 24: 302-310.
6. Montazeri, M., Pilehvar-Soltanahmadi, Y., Mohaghegh, M., Panahi, A., Khodi, S., Zarghami, N., and Sadeghizadeh, M. (). Antiproliferative and apoptotic effect of dendrosomal curcumin nanoformulation in P53 mutant and wide-type cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents). 2017; 17(5): 662-673.
7. Firouzi-Amandi, A., Dadashpour, M., Nouri, M., Zarghami, N., Serati-Nouri, H., Jafari-Gharabaghlou, D., and Pilehvar-Soltanahmadi, Y. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Biomedicine and Pharmacotherapy. 2018; 105: 773-780.
8. Farajzadeh, R., Zarghami, N., Serati-Nouri, H., Momeni-Javid, Z., Farajzadeh, T., Jalilzadeh-Tabrizi, S., and Pilehvar-Soltanahmadi, Y. Macrophage repolarization using CD44-targeting hyaluronic acid–polylactide nanoparticles containing curcumin. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(8): 2013-2021.
9. Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., and Hamblin, M. R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today. 2018; 12: 177-190.
10. Javidfar, S., Pilehvar-Soltanahmadi, Y., Farajzadeh, R., Lotfi-Attari, J., Shafiei-Irannejad, V., Hashemi, M., and Zarghami, N. (). The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells. Journal of Drug Delivery Science and Technology. 2018; 43: 19-26.
11. Zhang, Y., Yan, W., Sun, Z., Pan, C., Mi, X., Zhao, G., and Gao, J. Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption. Carbohydrate Polymers. 2015; 117: 657-665.
12. Rimoli, M. G., Rabaioli, M. R., Melisi, D., Curcio, A., Mondello, S., Mirabelli, R., and Abignente, E. Synthetic zeolites as a new tool for drug delivery. Journal of Biomedical Materials Research Part A. 2008; 87(1): 156-164.
13. Kang, J., Liu, H., Zheng, Y. M., Qu, J., and Chen, J. P. Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV–Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta. Journal of Colloid and Interface Science. 2011; 354(1): 261-267.
14. Mavrodinova, V., Popova, M., Yoncheva, K., Mihály, J., and Szegedi, Á. Solid-state encapsulation of Ag and sulfadiazine on zeolite Y carrier. Journal of Colloid and Interface Science. 2015; 458: 32-38.
15. Paradee, N., and Sirivat, A. Encapsulation of folic acid in zeolite y for controlled release via electric field. Molecular Pharmaceutics. 2016; 13(1): 155-162.
16. Krajišnik, D., Daković, A., Malenović, A., Kragović, M., and Milić, J. Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. Clay Minerals. 2015; 50(1): 11-22.
17. Talaei, S., Mellatyar, H., Pilehvar-Soltanahmadi, Y., Asadi, A., Akbarzadeh, A., and Zarghami, N. 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. Journal of Drug Delivery Science and Technology. 2019; 49: 162-168.
18. Mohseni-Bandpi, A., Al-Musawi, T. J., Ghahramani, E., Zarrabi, M., Mohebi, S., and Vahed, S. A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. Journal of Molecular Liquids. 2016; 218: 615-624.
19. Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., and Hamblin, M. R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today. 2018; 12:177-190.
20. Fatouros, D. G., Douroumis, D., Nikolakis, V., Ntais, S., Moschovi, A. M., Trivedi, V., and Cox, P. A. In vitro and in silico investigations of drug delivery via zeolite BEA. Journal of Materials Chemistry. 2011; 21(21): 7789-7794.
21. Sağir, T., Huysal, M., Durmus, Z., Kurt, B. Z., Senel, M., and Isık, S. Preparation and in vitro evaluation of 5-flourouracil loaded magnetite–zeolite nanocomposite (5-FU-MZNC) for cancer drug delivery applications. Biomedicine and Pharmacotherapy. 2016; 77: 182-190.
22. Bacakova, L., Vandrovcova, M., Kopova, I., and Jirka, I. Applications of zeolites in biotechnology and medicine–a review. Biomaterials Science. 2018; 6(5): 974-989.
23. Kumar, J., and Melo, J. S. Overview on biosensors for detection of organophosphate pesticides. Curr. Trends Biomed. Eng. Biosci, 2017; 5: 555-663.
24. Pan, Y., Zhan, S., and Xia, F. Zeolitic imidazolate framework-based biosensor for detection of HIV-1 DNA. Analytical Biochemistry. 2018; 546: 5-9.
25. Narang, J., Malhotra, N., Singhal, C., Mathur, A., Chakraborty, D., Anil, A., and Pundir, C. S. Point of care with micro fluidic paper based device integrated with nano zeolite–graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosensors and Bioelectronics. 2017; 88: 249-257.
26. Kaur, B., and Srivastava, R. A polyaniline–zeolite nanocomposite material based acetylcholinesterase biosensor for the sensitive detection of acetylcholine and organophosphates. New Journal of Chemistry. 2015; 39(9): 6899-6906.
27. Zhang, X., Sun, J., Liu, J., Xu, H., Dong, B., Sun, X., and Song, H. Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sensors and Actuators B: Chemical, 2018; 255: 2919-2926.
28. Ninan, N., Muthiah, M., Yahaya, N. A. B., Park, I. K., Elain, A., Wong, T. W., and Grohens, Y. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces B: Biointerfaces. 2014; 115: 244-252.
29. Neidrauer, M., Ercan, U. K., Bhattacharyya, A., Samuels, J., Sedlak, J., Trikha, R., and Joshi, S. G. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. Journal of Medical Microbiology. 2014; 63(2): 203-209.
30. L. Naves, L. Almeida, World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. 2015; 9: 242–246.
31. Davarpanah Jazi, R., Rafienia, M., Salehi Rozve, H., Karamian, E., and Sattary, M. Fabrication and characterization of electrospun poly lactic-co-glycolic acid/zeolite nanocomposite scaffolds using bone tissue engineering. Journal of Bioactive and Compatible Polymers. 2018; 33(1): 63-78.
32. Mehrasa, M., Anarkoli, A. O., Rafienia, M., Ghasemi, N., Davary, N., Bonakdar, S., ... and Salamat, M. R. Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: the influence on the physical, chemical properties and cell behavior. International Journal of Polymeric Materials and Polymeric Biomaterials. 2016; 65(9): 457-465.
33. Thomassen, L. C., Napierska, D., Dinsdale, D., Lievens, N., Jammaer, J., Lison, D., and Martens, J. A. Investigation of the cytotoxicity of nanozeolites A and Y. Nanotoxicology. 2012; 6(5): 472-485.
34. Ferreira, L., Guedes, J. F., Almeida-Aguiar, C., Fonseca, A. M., and Neves, I. C. Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids and Surfaces B: Biointerfaces. 2016; 142: 141-147.
35. Hrenovic, J., Milenkovic, J., Ivankovic, T., and Rajic, N. Antibacterial activity of heavy metal-loaded natural zeolite. Journal of Hazardous Materials. 2012; 201: 260-264.
36. Ferreira, L., Almeida-Aguiar, C., Parpot, P., Fonseca, A. M., and Neves, I. C. Preparation and assessment of antimicrobial properties of bimetallic materials based on NaY zeolite. RSC Advances. 2015; 5(47): 37188-37195.
37. Yu, L., Gong, J., Zeng, C., and Zhang, L. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering: C. 2013; 33(7): 3652-3660.
38. Chen, S., Popovich, J., Iannuzo, N., Haydel, S. E., and Seo, D. K. Silver-ion-exchanged nanostructured zeolite X as antibacterial agent with superior ion release kinetics and efficacy against methicillin-resistant Staphylococcus aureus. ACS applied materials and interfaces. 2017; 9(45): 39271-39282.
39. Zhou, Y., Deng, Y., He, P., Dong, F., Xia, Y., and He, Y. Antibacterial zeolite with a high silver-loading content and excellent antibacterial performance. Rsc Advances. 2014; 4(10): 5283-5288.
40. Dong, B., Belkhair, S., Zaarour, M., Fisher, L., Verran, J., Tosheva, L., and Mintova, S. Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties. Nanoscale. 2014; 6(18): 10859-10864.
41. Chau, J. L. H., Lee, C. C., Yang, C. C., and Shih, H. H. Zeolite-coated steel fibers for friction materials applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2016; 230(1): 35-42.
42. Alipour, M., Aghazadeh, M., Akbarzadeh, A., Vafajoo, Z., Aghazadeh, Z., and Raeisdasteh Hokmabad, V. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Artificial Cells, Nanomedicine, and Biotechnology. 2019; 47(1): 3431-3437.