Author(s):
Benjamin Bazie, Adama Hema, Bazoin Sylvain Raoul Bazié, Elie Kabré, Eloi Palé, Pierre Duez, Mouhoussine Nacro
Email(s):
baziebenjamin@yahoo.fr , hemaadama@yahoo.fr , bazsylvain@yahoo.fr , elie.kabre@gmail.com , eloipale@yahoo.fr , Pierre.DUEZ@umons.ac.be , mnacro@hotmail.com
DOI:
10.52711/0974-4150.2022.00004
Address:
Benjamin Bazie1, Adama Hema1*, Bazoin Sylvain Raoul Bazié2, Elie Kabré2, Eloi Palé1, Pierre Duez3, Mouhoussine Nacro1
1Laboratoire de Chimie Organique et Physique Appliquées, Département de Chimie, UFR-SEA, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
2Laboratoire national de santé publique (LNSP), 09 BP 24, Ouagadougou 09, Burkina Faso.
3Service de Chimie Thérapeutique et de Pharmacognosie, Université de Mons, 25 Chemin du Champ de Mars, 7000 Mons, Belgique.
*Corresponding Author
Published In:
Volume - 15,
Issue - 1,
Year - 2022
ABSTRACT:
The availability of scientific information useful for the orientation of artisanal and industrial tinctorial practices to ensure the protection of the environment and the health of artisans and consumers remains a major concern for a large number of actors. Qualitative, quantitative analyses and structural identifications works using spectrophotometric, chromatographic and spectral methods were carried out on the total aqueous extract from leaves of A. leiocarpus. This extract was used to dye skeins of cotton fibers. With an extraction yield of about 5 %, A. leiocarpus leaves gave a total flavonoid content of the order 458.759±27.773 mgEQ/g of dye powder. Hydrolysable and condensed tannins rates are 13.25 % and 12.96 %, respectively. The HPTLC chromatographic profile of the dye showed that the extract of the A. leiocarpus leaves contains flavonols. The elongation vibrations ?O-H and ?C-O respectively of alcohols and oxide ethers in infra-Red testify to the presence of flavonic-type dyeing molecules which, by the phenomenon of co-pigmentation, contribute to the final shades in tinctorial practice. High-performance liquid chromatography coupled with mass spectroscopy revealed the presence of major flavonoid molecules such as quercetin 3-O-rhamnoside, quercetin 3-O-glucuronide and kaempferol 3-O-hexoside. Tinctorial practice techniques applied to skeins of cotton fibers have resulted in shades of various colours ranging from anise to chartreuse green. In addition to being a natural acid dye, the textile dye extracted from A. leiocarpus leaves can be classified in the group of metal dyes in terms of the quality of the shades obtained with the use of mordants such as alum, hydrated iron and copper sulphates.
Cite this article:
Benjamin Bazie, Adama Hema, Bazoin Sylvain Raoul Bazié, Elie Kabré, Eloi Palé, Pierre Duez, Mouhoussine Nacro. HPLC-MS identification of three major flavonoids in the textile dye extract from dried leaves of Anogeissus leiocarpus. Asian Journal of Research in Chemistry. 2022; 15(1):27-4. doi: 10.52711/0974-4150.2022.00004
Cite(Electronic):
Benjamin Bazie, Adama Hema, Bazoin Sylvain Raoul Bazié, Elie Kabré, Eloi Palé, Pierre Duez, Mouhoussine Nacro. HPLC-MS identification of three major flavonoids in the textile dye extract from dried leaves of Anogeissus leiocarpus. Asian Journal of Research in Chemistry. 2022; 15(1):27-4. doi: 10.52711/0974-4150.2022.00004 Available on: https://ajrconline.org/AbstractView.aspx?PID=2022-15-1-4
REFERENCES:
1. Erna Bächi-Nussbaumer. Pratique des teintures végétales. Dessain et Tolra, 1979, 9-127.
2. Manuel Jesús Chan-Bacab, Patricia Sanmartín, Juan Carlos Camacho-Chab, Kahlia Beatriz Palomo-Ascanio, Hesby Emmanuel Huitz-Quim, Benjamín Otto Ortega-Morales. Characterization and dyeing potential of colorant-bearing plants of the Mayan area in Yucatan Peninsula, Mexico. Journal of Cleaner Production 2015, 91, 191-200.
3. Sumayya A. R., Sivagami Srinivasan. Proportional Physico-Chemical Analysis of Control Soil, Silk Dyeing Effluent Contaminated Soil and Biotreated Effluent Soil. Asian J. Pharm. Tech. 2019, 9 (1), 11-14. DOI: 10.5958/2231-5713.2019.00003.5
4. Islam, S., Shahid, M., Mohammad, F. Perspective for natural product based agents derived from industrial plants in textile applications- a review. J. Clean.Prod. 2013, 57, 2-18.
5. Franziska Ebner, Romana Hasenôhrl. Natural dyeing with plants, glorious colors from roots, leaves and flowers. 2018, 6-148.
6. Gérald Estur, Consultant-Banque mondiale. Qualité et consommation du coton fibre en Afrique. 2008, 1-87.
7. Eiichiro Ono, Miho Ruike, Takashi Iwashita, Kyosuke Nomoto, Yuko Fukui (2010). Co-pigmentation and flavonoid glycosyltransferases in blue veronica persica flowers. Phytochemistry 2010, 71, 726-735.
8. Ez-zohra NKHILI. Polyphénols de l’Alimentation: Extraction, Interactions avec les ions du fer et du Cuivre, Oxydation et Pouvoir antioxydant. Université CADI AYYAD, Université D’Avignon et des pays de Vaucluse. 2009, 96-230.
9. Amélie Dulac. Marqueurs phénotypiques de la diversité des ressources génétiques du genre Hydrangea. Thèse de doctorat, Chimie analytique, Université d’Angers. 2011, 22-26.
10. A. Sereme, J. Millogo-rasolodimby, S. Guinko, M. Nacro. Propriétés thérapeutiques des plantes à tanins du Burkina Faso. Pharmacopée et médecine traditionnelle Africaine 2008, 15, 41-49.
11. K. Gopalasatheeskumar. Significant role of soxhlet extraction process in phytochemical research. Mintage Journal of Pharmaceutical & Medical Sciences. 2018, 7, 43-44.
12. Bruneton, J. Les composés phénoliques, dans Pharmacognosie: phytochimie, plantes médicinales. 2e Ed. Lavoisier, 30. Paris 1993, 265-311.
13. Harborne, J. B. et R. J. Grayer. The flavonoids, Advances in research since 1980, J. B. Harborne. Ed: Chapman and Hall, London. 1998, 1-20.
14. Mole, S. and Waterman P.G. A critical analysis of techniques for measuring tannins in ecological studies. II. Technique for biochemically defining tannins. Oecologia 1987, 148.
15. Spanos, G. A., and Wrolstad, R. E. Phenolics of Apple, Pear and white Juices and their changes with Processing and storage. J. Agric. Food chem. 1992, 40, 1478-1487.
16. Mahmoudi S., Khali M., Mahmoudi N. Etude de l’extraction des composés phénoliques de différentes parties de la fleur d’ artichaut (Cynara scolymus L.). Nature et Technologie. B-Sciences Agronomiques et Biologiques 2013, n° 09, 35-40.
17. Ramasamy Arivukkarasu, Aiyalu Rajasekaran, Syed haffan bin hussain, Mohammed Ajnas. Simultaneous detection of Rutin, Quercetin, Gallic acid, Caffeic acid, Ferulic acid, Coumarin, Mangiferin and Catechin in Hepatoprotective commercial herbal formulations by HPTLC technique. Res. J. Pharmacognosy and Phytochem. 2018, 10 (1), 59-62. DOI: 10.5958/0975-4385.2018.00009.2
18. Vanita P. Rode, Madhukar R. Tajne. A Validated Stability-Indicating High-Performance Thin-Layer Chromatographic Method for the Analysis of Pitavastatin in Bulk Drug and Tablet Fomulation. Asian J. Pharm. Ana. 2018, 8 (1) 49-52. DOI: 10.5958/2231-5675.2018.00009.1
19. Preeti Tiwari, D.J. Sen, Rakesh K. Patel. Development and Validation of HPTLC Method for Quantification of Gallic acid and Catechin from Draksharishta. Asian J. Research Chem. 2013, 6 (3), 248-253.
20. Padma S. Vankar. Handbook on Natural Dyes for Industrial Applications (Extraction of Dyestuff from Flowers, Leaves, Vegetables). Edit: National Institute of Industrial Research.106-E, Kamia Nagar, Delhi-110 007 (INDIA) 2016, 472.
21. M. Khanahmadi, F. Shahrezaei, A. Alizadeh. Isolation and Structural Elucidation of Two Flavonoids from Ferulago angulata (Schlecht) Boiss. Asian J. Research Chem. 2011, 4 (11), 1667-1670.
22. Strack, D. and Wray, V. The anthocyanins. In The flavonoid, Advances in Research since 1986 (Harborne, J.B. ed.) Chapman and Hall, New York 1994, 1-22.
23. Lee, S.H. and Hong V. Chromatographic analysis of anthocyanins. J. Chromatography, 1992, 624, 221.
24. M. Karas, F. Hillenkamp. Laser desorption ionization of proteins with molecular masses exceeding 10000. Anal chem. 1988, 60 (20), 299-301, DOI: 10.1021/ac00171a028.
25. Stage à CRMPO. Méthodes Spectroscopiques d’Analyse, Université de Rennes 1, 1996, 39-42.
26. M. Holcapek, P. Jandera, and p. Zderadicka. High performance liquid chromatography-mass spectrometric analysis of sulphonated dyes and intermediates. Chemistry, Medicine. Journal of chromatography A 2001, 926, 175.
27. S. Pesnel (1), V. Pasquet (1, 2), A. Perwuelz (, 2), D. Hazard (3) and C. Dupuich. Le mercerisage du coton améliore l’impact environnemental des chemises. veramtex.com. 2012, 1.
28. Hyun-Joo Song, Su-Mi Kim and Wha-Soon Song. The Physical Properties and Dye ability of KOH Treated Cotton Fabrics. J. Kor. Soc. Cloth. Ind. 2005, 7 (1), 91-95.
29. S. Sivajiganesan. Eco-Friendly Natural Dye from Bark of Acacia leucophloea for Dyeing of Cotton Fabric using Different Temperature and Mordant. Asian J. Research Chem. 2017, 10 (1), 1-5. DOI: 10.5958/0974-4150.2017.00001.3
30. François Delamare et Bernard Monasse. Le rôle de l’alun comme mordant en teinture. Une approche par simulation numérique: cas de la teinture de la cellulose à l’alizarine. Centre Jean Bérard 2005, 277-291.
31. Ibrahim Abdullahi Umar. Fastness Properties of Colorant Extracted from Tamarind Fruits Pods to Dye cotton and Silk Fabrics. Journal of Natural Sciences Research 2013, 61.
32. Veerabhuvaneshwari Veerichetty, Baby Shalini M, Balaji Sadhasivama, Saraswathy Nachimuthu. Extraction of dye from Ixora coccinea and Beta vulgaris for Eco-dyeing. Research J. Engineering and Tech. 2017, 8 (4), 378-382. DOI: 10.5958/2321-581X.2017.00067.8
33. Marie Marquet. Guide des teintures naturelles, ‘’l’autonomie par les livres’’ 2019, 1-4.
34. Aurélia Wolff. Teintures végétales, carnet de recettes et cahier d’inspirations 2018, 12-44.
35. Virendra Kumar Gupta. Fundamentals of Natural Dyes and Its Application on Textile Substrates. Chemistry and Technology of Natural and Synthetic Dyes and pigments, 2019, 1-33.
36. M. Nagarajan, A. J. M. Christina, P. Devi, R. Meera. HPTLC analysis and Phytochemical Investigation of Leaves of Euphoria longan. Asian J. Research Chem. 2010, 3 (1), 31-35.
37. Preeti Tiwari, Rakesh K. Patel. Quantification of Quercetin and Rutin in Arjunarishta Prepared by Traditional and Modern Methods by Validated HPTLC Densitometry. Asian J. Research Chem. 2011, 4 (6), 1019-1024.
38. Latifa Chebil. Acylation des flavonoïdes par les lipases de Candida antarctica et Pseudomonas cepacia: études cinétique, structurale et conformationnelle. Université de Lorraine 2018, 231.
39. Barthélemy Attioua, Latifou Lagnika, Dodehe Yeo, Cyril Antheaume, Marcel Kaiser, Bernard Weniger, Annelise Lobstein, Catherine Vonthron-Sénécheau. In vitro antiplasmodial and antileishmanial activities of flavonoids from anogeissus leiocarpus (combretaceae). International Journal of Pharmaceutical Sciences Review and Research 2011, 11 (2), 1-6.
40. E. Y. A. Salih, M. Kanninen, M. Sipi, O. Luukhanen, R. Hiltunen, H. Vuorela, R. Julkunen-Tiitto, P. Fyhrquist. Tannins, flavonoids and stilbenes in extracts of African savanna woodland trees Terminalia brownii, Terminalia laxiflora and Anogeissus Leiocarpus showing promising antibacterial potential. South African Journal of Botany 2017, 108, 370-386.
41. Nduji A.A. and Okwute S.K. Co-occurrence of 3,3',4'-tri-O-methylflavellagic acid and 3,3'-di-Omethylellagic acid in the bark of Anogeissus schimperii. Phytochemistry 1988, 27(5) 1548-1550.
42. Adigun J.O., Amupitan J.O. and Kelly D., R. Isolation and investigation of antimicrobial effectof 3,4,3'-Tri-O-methylflavellagic acid and its glucoside from Anogeissus leocarpus. Bulletin of the Chemical Society of Ethiopia 2000, 14(2), 169-174.
43. Aspinall G.O. and Carlyle J.J. Anogeissus leiocarpus gum. IV. Exterior chains of leiocarpan A. J Chem Soc 1969, C5, 851-856.
44. Chaabi M., Benayache S., Benayache F., N’Gom S., Kone´ M., Anton R., Weniger B. and Lobstein A. Triterpenes and polyphenols from Anogeissus leiocarpus (Combretaceae). Biochemical Systematics and Ecology 2008, 36, 59-62.
45. U. Baumgarte, Melliand Textilber. Industrial Dyes: Chemistry, Properties, Applications 2007, 44, 163-267.
46. Brent Smith, Rebecca Berger, Harold S Freeman. High affinity, high efficiency fibre-reactive dyes. Coloration technology 2006, 122 (4), 187-193.