ABSTRACT:
In the present study, the feasibility of using single particle Cu and hybrid Cu/Al2O3 nanofluids as heat transfer fluids in a coupled solar parabolic trough collector-heat water storage tank for domestic absorption cooling systems. A computer program based on one dimensional implicit finite difference method and energy balance approach has been developed to investigate the behavior of the studied system under the real climate conditions of a typical summer day in Adrar city, Algeria. The simulation findings reveal that solar parabolic trough collector with small area of 6m² and storage tank of 0.3m3 can ensure higher storage tank temperature able to drive an absorption cooling machine. Solar system with hybrid nanofluid shows superior performance compared to single nanofluid and pure water. Furthermore, the effect of nanoparticle's volume fraction is evaluated. The heat storage tank temperature can attain starting operating chiller temperature more rapidly with small volume fraction equal to 0.2% in the case of Cu-Al2O3/Water hybrid nanofluid.
Cite this article:
Yacine Marif, Afak Benazzouz, Belkhir Hebbal. The effect of single and hybrid nanofluids in the performance of Solar Water Heating System. Asian Journal of Research in Chemistry. 2022; 15(6):489-4. doi: 10.52711/0974-4150.2022.00083
Cite(Electronic):
Yacine Marif, Afak Benazzouz, Belkhir Hebbal. The effect of single and hybrid nanofluids in the performance of Solar Water Heating System. Asian Journal of Research in Chemistry. 2022; 15(6):489-4. doi: 10.52711/0974-4150.2022.00083 Available on: https://ajrconline.org/AbstractView.aspx?PID=2022-15-6-15
REFERENCES:
1. Al-Sallal KH. Al-Rais L. Bin Dalmouk M. Designing a sustainable house in the desert of Abu Dhabi. Renew Energy 2013; 49: 80–84. https://doi.org/10.1016/j.renene.2012.01.061
2. Hatamipour MS. Mahiyar H. Taheri M. Evaluation of existing cooling systems for reducing cooling power consumption. Energy and Buildings 2007; 39: 105–112. https://doi.org/10.1016/j.enbuild.2006.05.007
3. Bekkouche SMA. Benouaz T. Yaiche MR. Cherier MK. Hamdani M. Chellali F. Introduction to control of solar gain and internal temperatures by thermal insulation. proper orientation and eaves. Energy and buildings 2011;43: 2414-2421. https://doi.org/10.1016/j.enbuild.2011.05.018.
4. Hebbal B. Marif Y. Hamdani M. Belhadj M M. Bouguettaia H. Bechki D. The geothermal potential of underground buildings in hot climates:Case of Southern Algeria. Case Studies in Thermal Engineering 2022;28:101422. https://doi.org/10.1016/j.csite.2021.101422
5. Bahria S. Amirat M. Hamidat A. El Ganaoui M. El Amine Slimani M. Parametric study of solar heating and cooling systems in different climates of Algeria e A comparison between conventional and high energy performance buildings. Energy 2016;113:521-535. https://doi.org/10.1016/j.energy.2016.07.022.
6. Evangelos B. Christos T. Kimon AA. Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Applied Thermal Engineering 2016; 102: 749–759. https://doi.org/10.1016/j.applthermaleng.2016.04.032
7. Al-Falahi A. Falah A. Bernd E. Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles. Case Studies in Thermal Engineering 2020; 22: 100763. https://doi.org/10.1016/j.csite.2020.100763.
8. Rosiek S. Batlles F.Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building. Renewable Energy 2009; 34: 1423-1431. https://doi.org/10.1016/j.renene.2008.11.021
9. Ramadas N. Gopi K H. Santu G. Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region. Case Studies in Thermal Engineering 2021; 27: 101202. https://doi.org/10.1016/j.csite.2021.101202
10. Cabrera FJ. Fernandez-Garci A. Silva RMP. Perez-Garci M.. Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications. Renewable and Sustainable Energy Reviews 2013; 20:103–118. https://doi.org/10.1016/j.rser.2012.11.081
11. Osman MG. Performance analysis and load matching for tracking cylindrical parabolic collector for solar cooling in arid zones. Energy Conversion and Management 1985; 25: 295–302. https://doi.org/10.1016/0196-8904(85)90046-9
12. Mazloumi M. Naghashzadegan M. Javaherdeh K. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector. Energy Conversion and Management 2008; 49: 2820–2832. https://doi.org/10.1016/j.enconman.2008.03.014
13. Nidal H. Abu-Hamdeh. Khaled A. Alnefaie. Khalid H. Almitani. Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: experimental and statistical optimization technique. Energy Conversion and Management 2013 ;74 :162–170. https://doi.org/10.1016/j.enconman.2013.04.043
14. Ruchika D. Puneet R. Lokendra K. Dual Solutions in MHD Boundary Layer Nanofluid Flow and Heat Transfer with Heat Source/Sink considering Viscous Dissipation. Research J. Engineering and Tech. 2015; 6(1):142-148. https://doi.org/10.5958/2321-581X.2015.00021.5
15. Prabha T. Aishwaryah P. Manickavalli E. Chandru R. Arulbharathi G. Anu A. Sivakumar T. A Chalcone Annulated Pyrazoline Conjugates as a Potent Antimycobacterial Agents: Synthesis and in Silico Molecular Modeling Studies. Research J. Pharm. and Tech. 2019; 12(8): 3857-3865. https://doi.org/10.5958/0974-360X.2019.00663.2
16. Habeeb M. Deepthi KL. Vijaya Vara Prasad M. Irfan N. Shaik Liakhat A. Navyaja K. Development Characterization and Molecular Simulation studies of Metoclopramide HCl and Tramadol HCl Bilayer Tablets. Research Journal of Pharmacy and Technology 2022; 15(2):529-4. https://doi.org/10.52711/0974-360X.2022.00085
17. Ahuja J. Gupta U. Magneto convection of rotating nanofluids in porous medium: metals and semiconductors as nanoparticles. Research J. Science and Tech. 2017; 9(1):135-142. https://doi.org/10.5958/2349-2988.2017.00022.5
18. Suneetha S. Bala Anki Reddy P. Investigation on Graphene Nanofluids and its Applications: A brief Literature Review. Research J. Pharm. and Tech. 2016; 9(6):655-663. https://doi.org/10.5958/0974-360X.2016.00124.4
19. Dave A. Sharma K. Chandramuly RS. Comprehensive Study on Graphene Nanofluids and its Applications: Literature Review. Research Journal of Science and Technology. 2021; 13(3):200-4. https://doi.org/10.52711/2349-2988.2021.00030
20. Rajput D. Kumar R. Efficiency Enhancement of Solar Water Heater using CNT/H2O Nanofluid. Research J. Science and Tech. 2018; 10(4):295-299. https://doi.org/10.5958/2349-2988.2018.00042.6
21. Jyoti A. Urvashi G. Wanchoo RK. Hydromagnetic Stability of Al2O3-Water and CuO-Water Nanofluids: Effect on Critical Rayleigh Number. Research J. Engineering and Tech. 2015; 6(1):136-141. https://doi.org/10.5958/2321-581X.2015.00020.3
22. Vedavathi VN. Balamurugan KS. Dharmaiah G. Analysis of Heat and Mass Transfer on MHD flow with Ag, Al2O3 and Cu Water Nanofluids over a Semi Infinite Surface. Research J. Science and Tech. 2017; 9(3):359-367. https://doi.org/10.5958/2349-2988.2017.00063.8
23. Sergio P. Cristian P. Sethuven Sk. Stephen W. Gary R. A review of thermal energy storage technologies and control approaches for solar cooling Renewable and Sustainable. Energy Reviews 2015; 41: 975–995. https://doi.org/10.1016/j.rser.2014.08.062
24. Coccia G. Di Nicola G. Colla L. Fedele L. Scattolini M. Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield. Energy Conversion and Management 2016;118:306-319. https://doi.org/10.1016/j.enconman.2016.04.013
25. Rehan MA. Ali M. Sheikh N.A. Khalil MS. Chaudhary G.Q. Rashid T. Shehryar M. Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions. Renewable Energy 2018;118:742-751. https://doi.org/10.1016/j.renene.2017.11.062
26. Evangelos B. Christos T. Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science 2019; 71: 81–117. https://doi.org/10.1016/j.pecs.2018.11.001
27. Guillaume A. Modélisation, simulation dynamique, validation expérimentale et optimisation énergétique d’une unité de rafraichissement solaire par absorption. Thèse de doctorat en energetique. Université de Pau et des Pays de l’ Adour 2011
28. Brooks MJ. Performance of a parabolic trough solar collector. Thesis in Master of Science Degree in Engineering. University of Stellenbosch. South Africa 2005.
29. Marif Y. Benmoussa H. Bouguettaia H. Belhadj MM. Zerrouki M. Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region. Energy Conversion and Management 2014; 85: 521–529. https://doi.org/10.1016/j.enconman.2014.06.002
30. Ya-Ling. He, Jie. Xiao, Ze-Dong. Cheng, Yu-Bing. Tao. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy 2011; 36: 976-985. https://doi.org/10.1016/j.renene.2010.07.017
31. Ranga Babu JA. Kiran KK. Srinivasa Rao S. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 2017; 77:551–565. https://doi.org/10.1016/j.rser.2017.04.040
32. Chitra B. Sathish KK. Manoj D. Mohan KS. Experimental Study to Enhance the Thermal Conductivity of Nanofluid. Research J. Engineering and Tech 2013; 4(4): 272-278.
33. Maiga SEB. Palm SJ. Nguyen CT. Roy G. Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 2005; 26 (4):530–46. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004