Author(s):
Pankaj Kisan Chatki, Sana Tabassum, Amol Sudhakar Warokar, Ujwala N. Mahajan
Email(s):
pankajchatki22@gmail.com , sanaksm1996@gmail.com , amol_warokar@rediffmail.com , ujwalat5@gmail.com
DOI:
10.52711/0974-4150.2025.00054
Address:
Pankaj Kisan Chatki1*, Sana Tabassum2, Amol Sudhakar Warokar3, Ujwala N. Mahajan4
1Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India.
2Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India.
3Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India.
4Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
A liquid chromatographic method optimized for the dissolution profiling of tyrosine kinase inhibitors (Afatinib and Ibrutinib). The method emphasizes eco-friendliness while ensuring high analytical performance by adhering to green chromatographic principles. The Afatinib and Ibrutinib showed adequate resolution on the Shimadzu Shim-pack solar C18 (150 × 4.6mm, 3µm) column within 10min. The mobile phase composition involves mobile phase- A (25mM Potassium dihydrogen phosphate pH 3.0 buffer) and mobile phase-B (Ethanol: Water, in the ratio of 90: 10% V/V), pumped at a flow rate of 0.80mL/min by isocratic elution mode. Based on the obtained validation results, it is found that the optimized method is specific, linear, accurate, precise and robust. The proposed HPLC method is an excellent green method as the obtained analytical eco-scale score is 94. Based on the obtained pictograms of greenness assessment tools such as national environmental methods index label (NEMI), modified NEMI, green analytical procedure index pictogram (GAPI), complex GAPI, analytical greenness (AGREE), and AGREE preparation the method is found to be green. The eco-friendly liquid chromatographic method offers a reliable and sustainable approach for evaluating the dissolution profiles of dosage forms, significantly reducing potential harm to the environment and living organisms.
Cite this article:
Pankaj Kisan Chatki, Sana Tabassum, Amol Sudhakar Warokar, Ujwala N. Mahajan. Eco-friendly Liquid Chromatographic Method for the Estimation of Dissolution Profile of Tyrosine Kinase Inhibitors in Drug Products. Asian Journal of Research in Chemistry. 2025; 18(5):348-6. doi: 10.52711/0974-4150.2025.00054
Cite(Electronic):
Pankaj Kisan Chatki, Sana Tabassum, Amol Sudhakar Warokar, Ujwala N. Mahajan. Eco-friendly Liquid Chromatographic Method for the Estimation of Dissolution Profile of Tyrosine Kinase Inhibitors in Drug Products. Asian Journal of Research in Chemistry. 2025; 18(5):348-6. doi: 10.52711/0974-4150.2025.00054 Available on: https://ajrconline.org/AbstractView.aspx?PID=2025-18-5-9
REFERENCES:
1. Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. Journal of Clinical Oncology. 2013 Sep 20; 31(27): 3327-34. doi: 10.1200/JCO.2012.44.2806.
2. Paz-Ares L, Tan EH, O’Byrne K, Zhang L, Hirsh V, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase IIb LUX-Lung 7 trial. Annals of Oncology. 2017; 28(2): 270–7. doi:10.1016/S1470-2045(16)30033-X.
3. Mok T, Cheng S, Zhou X, Lee KH, Nakagawa K, Niho S, Lee M, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. Journal of Clinical Oncology. 2018; 36(22): 2244–50. doi:10.1200/JCO.2018.78.7994.
4. Brullo C, Villa C, Tasso B, Russo E, Spallarossa A. Btk inhibitors: A medicinal chemistry and drug delivery perspective. International Journal of Molecular Sciences. 2021; 22(14): 7641. doi:10.3390/ijms22147641.
5. Anand O, Yu LX, Conner DP, Davit BM. Dissolution testing for generic drugs: An FDA perspective. AAPS Journal. 2011; 13(2): 328–35. doi:10.1208/s12248-011-9272-y.
6. FDA. Compilation of FDA guidance and resources: In vitro dissolution testing of immediate release solid oral dosage forms [Internet]. U.S. Food and Drug Administration; [cited 2025]. Available from: https://www.fda.gov/animal-veterinary/new-animal-drug-applications/compilation-fda-guidance-and-resources-in-vitro-dissolution-testing-immediate-release-solid-oral-dosage
7. Gałuszka A, Migaszewski Z, Namiesnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends in Analytical Chemistry. 2013; 50: 78–84. doi: 10.1016/j.trac.2013.04.010.
8. Paul A, Romas K, Gary S. Ten years of green chemistry at the Gordon Research Conferences: Frontiers of science. Green Chemistry. 2006; 8(7): 677–8. doi:10.1039/b608918f.
9. Dhoru M, Shah K, Detholia K, Patel M. Green chromatography: The eco-friendly and safer concept of green analytical chemistry. International Journal of Pharmaceutical Sciences and Research. 2020; 11(3): 1022–32. doi:10.13040/IJPSR.0975-8232.11(3).1022-32.
10. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the GREEnness of analytical procedures. Trends in Analytical Chemistry. 2012; 37: 61–72. doi: 10.1016/j.trac.2012.03.013.
11. Tobiszewski M, Marć M, Gałuszka A, Namieśnik J. Green chemistry metrics with special reference to green analytical chemistry. Molecules. 2015; 20(6): 10928–46. doi:10.3390/molecules200610928.
12. Wasylka PJ. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta. 2018; 181: 204–9. doi: 10.1016/j.talanta.2018.01.013.
13. Płotka WJ, Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chemistry. 2021; 23(22): 8657–65. doi:10.1039/d1gc02318g.
14. Francisco PP, Wojciech W, Marek T. AGREE-Analytical GREEnness metric approach and software. Analytical Chemistry. 2020;92(15):10076–82. doi: 10.1021/acs.analchem.0c01887.
15. Wojciech W, Marek T, Francisco PP, Elefteria P. AGREEprep – Analytical greenness metric for sample preparation. Trends in Analytical Chemistry. 2022; 149: 116553. doi: 10.1016/j.trac.2022.116553.
16. Sparidans RW, Van Hoppe S, Rood JJ, Schinkel AH, Schellens JH, Beijnen JH. Liquid chromatography–tandem mass spectrometric assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid–liquid extraction. Journal of Chromatography B. 2016; 1012: 118–23. doi: 10.1016/j.jchromb.2016.01.025.
17. Hayashi H, Kita Y, Iihara H, Yanase K, Ohno Y, Hirose C, et al. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer. Biomedical Chromatography. 2016; 30(8): 1150–4. doi:10.1002/bmc.3642.
18. Fouad M, Helvenstein M, Blankert B. Ultra high-performance liquid chromatography method for the determination of two recently FDA approved TKIs in human plasma using diode array detection. Journal of Analytical Methods in Chemistry. 2015; 2015: Article ID 215128. doi:10.1155/2015/215128.
19. Xiang SX, Kang C, Xie LX, Yin XL, Gu HW, Yu RQ. Fast quantitative analysis of four tyrosine kinase inhibitors in different human plasma samples using three-way calibration-assisted liquid chromatography with diode array detection. Journal of Separation Science. 2015; 38(16): 2781–8. doi:10.1002/jssc.201500391.
20. Schnell D, Buschke S, Fuchs H, Gansser D, Goeldner RG, Uttenreuther-Fischer M, et al. Pharmacokinetics of afatinib in subjects with mild or moderate hepatic impairment. Cancer Chemotherapy and Pharmacology. 2014; 74(2): 267–75. doi:10.1007/s00280-014-2484-y.
21. Stopfer P, Marzin K, Narjes H, Gansser D, Shahidi M, et al. Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers. Cancer Chemotherapy and Pharmacology. 2012; 69(5): 1051–61. doi:10.1007/s00280-011-1803-9.
22. Vejendla R, Subramanyam C, Veerabhadram G. New RP-HPLC method for the determination of afatinib dimaleate in bulk and pharmaceutical dosage forms. Journal of Developing Drugs. 2015; 4: 2098–211. doi:10.4172/2329-6631.C1.012.
23. Pankaj KC, Mohanish MM, Amol SW, Ujwala NM. Box-Behnken design in optimization of the green liquid chromatographic method for the quantification of afatinib in drug product: AQbD approach. Journal of Liquid Chromatography and Related Technologies. 2024; 47(5-6): 349–59. doi:10.1080/10826076.2024.2384039.
24. Santhoshillendula I, Priyanka D, Shirisha V, Rao KNV, Dutt R. A new simple method development and validation of ibrutinib in bulk and pharmaceutical dosage form by RP-HPLC. International Journal of Pharmaceutical and Biological Sciences. 2019; 9(1): 36–46. doi:10.21276/ijpbs.2019.9.1.5.
25. Kapavarapu S, Golkonda R, Chintala R. Validation of stability indicating RP-HPLC method for the assay of ibrutinib in pharmaceutical dosage form. Analytical Chemistry: An Indian Journal. 2016; 16:7–19. ISSN: 0974-7419.
26. Muneer S, Ahad HA, Bonnoth CK. A novel stability indicating analytical development and validation of a RP-HPLC assay method for the quantification of ibrutinib in bulk and its formulation. Journal of Pharmacy Research. 2017; 11(7): 712–8. ISSN: 0974-6943.
27. Uppala V, Divya N, Charishma E, Harshavardan K, Shyamala M. Validated stability-indicating RP-HPLC method for determination of ibrutinib. Indo American Journal of Pharmaceutical Sciences. 2016;3(3):324–30. ISSN: 2349-7750.
28. Pankaj KC, Ujwala NM. Eco-friendly liquid chromatography method for the quantification of ibrutinib in a pharmaceutical dosage form. Biomedical Chromatography. 2023; 38(1): e5792. doi:10.1002/bmc.5792.
29. Sana Tabassum, Ajitha M. Quantitative Spectrophotometric Estimation of Prednisolone in Tablet Dosage Form Using Eco-friendly Green Solvent and by applying Beer-Lambert’s Law Mathematical Equation Method. Asian Journal of Research in Chemistry. 2021; 14(3): 155-0.
30. Seftika Sari, Tri Murti Andayani, Dwi Endarti, Kartika Widayati. Cost-Effectiveness Analysis of Afatinib versus Gefitinib in Non-small Cell Lung Cancer (NSCLC) with Epidermal Growth Factor Receptor (EGFR) Mutation in Indonesia: Observational studies with Retrospectives. Research Journal of Pharmacy and Technology. 2022; 15(4): 1598-2.
31. Naga Prashant Koppuravuri, Suvarna Yenduri, Varalakshmi H N. Judging the Greenness of Analytical Method using Ecological Foot Prints: A Green Metric Approach. Research Journal Pharmacy and Technology. 2024; 17(12): 6132-6.
32. Ahmed I. Hassan. Green Chemistry Approach for Determination of H2-receptor Antagonists in Their Pharmaceutical Dosage Forms with an Optical Probe. Asian Journal of Pharmaceutical Analysis. 2019; 9(1): 19-24.
33. Sourabh D. Jain, Anuja Awasthi, Arun K. Gupta. Green Chemistry: A Sustainable Path to Environmental Responsibility and Innovation. Asian Journal of Research in Pharmaceutical Sciences. Sci. 2024; 14(1): 51-5.
34. Priyanka M. Patel, Alka A. Patil, Manisha D. Patil, Pinal S. Patil, S.L.Borse. Green Chemistry -An Overview. Asian Journal of Research in Chemistry. 2013; 6(7): 705-709.
35. S. Sharma, Tania Bansal, Radhika, Sandeep Kaur, Jyoti. Green Chemistry: An Overview. Asian Journal of Research in Chemistry. 6(11): November 2013; Page 1075-1084.
36. Mote Bhagyashree, Patil Anuja, Nikam Amit, Rushikesh Sonawane. A Review: Green Chemistry Importance and applications in practice Laboratory. Asian Journal of Research in Chemistry.2020; 13(6):494-496.
37. Sheemaz Sultana, Nirmal. T. Havannavar, Husnain Fathima. Estimation of Ibrutinib in Dosage Form and in Bulk Drug by UV Spectrophotometric and Colorimetry Methods. Asian Journal of Research in Chemistry. 2022; 15(4): 245-0. doi: 10.52711/0974-4150.2022.00044
38. Gujju. Hima Bindu, Mukthinuthalapati Mathrusri Annapurna. A sensitive stability indicating RP-HPLC method for the determination of Ibrutinib - An anti-cancer drug. Research Journal of Pharmacy and Technology. 2018; 11(10): 4587-4591. doi: 10.5958/0974-360X.2018.00839.9