Author(s):
Abhimanyu Pawar, Kishor Naktode, Arvind Mungole, Dalesh Parshuramkar
Email(s):
abhaypawar1988@gmail.com
DOI:
10.52711/0974-4150.2025.00047
Address:
Abhimanyu Pawar1*, Kishor Naktode1, Arvind Mungole2, Dalesh Parshuramkar3
1Department of Chemistry, Nevjabai Hitkarini College, Bramhapuri, Maharashtra 441206, India.
2Department of Botany, Nevjabai Hitkarini College, Bramhapuri, Maharashtra 441206, India.
3Department of Physics, Nevjabai Hitkarini College, Bramhapuri, Maharashtra 441206, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
We developed a sustainable and efficient protocol for synthesizing isoxazol-5(4H)-one derivatives using green synthesized silver nanoparticles as a green nonocatalyst. The one-pot, three-component reaction of aromatic aldehydes, ethyl acetoacetate, and hydroxylamine hydrochloride proceeded smoothly in aqueous phase at room temperature, affording the target compounds in high to excellent yields with short reaction times. The plant-derived silver nanoparticles demonstrated exceptional catalytic activity while offering advantages such as low toxicity, cost-effectiveness, and easy handling. Notably, electron-donating substituents on the aromatic aldehydes enhanced reactivity, whereas steric and electronic factors influenced reaction efficiency. This method aligns with green chemistry principles by eliminating organic solvents, minimizing energy consumption, and utilizing a biodegradable catalyst. The protocol provides a practical, eco-friendly, and scalable approach to heterocyclic synthesis, making it a valuable addition to sustainable organic transformations.
Cite this article:
Abhimanyu Pawar, Kishor Naktode, Arvind Mungole, Dalesh Parshuramkar. Biosynthesized Silver Nanoparticles Catalyzed Aqueous-Phase Synthesis of Isoxazol-5(4H)-One Derivatives. Asian Journal of Research in Chemistry. 2025; 18(5):311-8. doi: 10.52711/0974-4150.2025.00047
Cite(Electronic):
Abhimanyu Pawar, Kishor Naktode, Arvind Mungole, Dalesh Parshuramkar. Biosynthesized Silver Nanoparticles Catalyzed Aqueous-Phase Synthesis of Isoxazol-5(4H)-One Derivatives. Asian Journal of Research in Chemistry. 2025; 18(5):311-8. doi: 10.52711/0974-4150.2025.00047 Available on: https://ajrconline.org/AbstractView.aspx?PID=2025-18-5-2
REFERENCES:
1. Anna Pratima Nikalje, Amogh C. Tathe, Mangesh S. Ghodke. Biocatalysis: A Brief Review. Asian J. Research Chem. 2011; 4(9): 1355-1360.
2. Afewerki S, Cordova A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chemical Reviews. 2016; 116(22): 13512–13570. doi: 10.1021/acs.chemrev.6b00226
3. Ch. V. Subbarao, K.V. Dharma Rao, T. Srinivas, Sumana V.S, Krishna Prasad K.M.M. Review on Heterogeneous Catalysis for Biodiesel Production. Asian J. Research Chem. 2011; 4(4): 524-536.
4. Raghu Ram G., Rohit K., Srikanth P., Subbarao Ch. V., Krishn Prasad K. M. M. Homogeneous Catalysis for Biodiesel Production- A Review. Asian J. Research Chem. 2011; 4(6): 873-878.
5. Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: a review. RSC Advances. 2015; 5(66): 53381–53403. doi: 10.1039/C5RA06778B.
6. Abady MM, Mohammed DM, Soliman TN, Shalaby RA, Sakr FA. Sustainable synthesis of nanomaterials using different renewable sources. Bulletin of the National Research Centre. 2025; 49(1): 24. doi: 10.1186/s42269-025-01316-4.
7. Raviraj M. Kulkarni, Manjunath S. Hanagadakar, Ramesh S. Malladi. Silver (I) catalyzed and uncatalyzed oxidation of levofloxacin with aqueous chlorine: A comparative kinetic and mechanistic approach. Asian J. Research Chem. 2013; 6(12): 1124-1132.
8. Athar Jamal, Ayesha Maqsood. Review of Synthesis of Silver Nanoparticles from different Medicinal Plants and their Pharmacological Activities. Asian J. Pharm. Tech. 2021; 11(1): 88-93.
9. Jain K, Takuli A, Gupta TK, Gupta D. Rethinking nanoparticle synthesis: a sustainable approach vs. traditional methods. Chemistry–An Asian Journal. 2024; 19(21): e202400701. doi: 10.1002/asia.202400701.
10. Shahzadi S, Fatima S, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Advances. 2025; 15(5): 3858–3903. doi: 10.1039/D4RA07519F.
11. Dawle J. K., Mathapati S. R., Bondge A. S., Momin K. I.. Green Synthesis of Novel Heterocycles Carrying Triazole Derivatives of Dihydropyrimidine. Asian J. Research Chem. 2012; 5(6): 707-711.
12. Sonali P. Mahaparale, Reshma S. Kore. Silver Nanoparticles: Synthesis, Characterization, Application, Future Outlook. Asian J. Pharm. Res. 2019; 9(3): 181-189.
13. S. Sathish Kumar, G. Melchias, P. Ravikumar, R. Chandrasekar, P. Kumaravel. Bioinspired synthesis of silver nanoparticles using Euphorbia hirta leaf extracts and their antibacterial activity. Asian J. Pharm. Res. 2014; 4(1): 39-43.
14. Manohar V Lokhande, Priyaka R. Kokate, Khushi M. Sapkale, Mitali M. Tendulkar. Bio-Synthesis of AgNPs and MnNPs of Philodendron giganteum Herbal Extract and catalysis’s activity. Asian Journal of Research in Pharmaceutical Sciences. 2024; 14(2): 122-8.
15. C. Thiruppathi, P. Kumaravel, R. Duraisamy, AK. Prabhakaran, T. Jeyanthi, R. Sivaperumal, P.A. Karthick. Biofabrication of Silver nanoparticles using Cocculus hirsutus leaf extract and their antimicrobial efficacy. Silver nanoparticles, Cocculus hirsutus, Antimicrobial activity. Asian J. Pharm. Tech. 2013; 3(3): 93-97. .
16. Chowdhury SS, Ibnat N, Hasan M, Ghosh A. Medicinal Plant-Based nanoparticle synthesis and their diverse applications. In: Ethnopharmacology and OMICS Advances in Medicinal Plants Volume 2: Revealing the Secrets of Medicinal Plants. Singapore: Springer Nature Singapore; 2024:213–250. doi: 10.1007/978-981-97-4292-9_10.
17. Manohar V Lokhande, Priyaka R. Kokate, Khushi M. Sapkale, Mitali M. Tendulkar. Bio-Synthesis of AgNPs and MnNPs of Philodendron giganteum Herbal Extract and catalysis’s activity. Asian Journal of Research in Pharmaceutical Sciences. 2024; 14(2): 122-8.
18. Pandhurnekar CP, Pandhurnekar HC, Mungole AJ, Butoliya SS, Yadao BG. A review of recent synthetic strategies and biological activities of isoxazole. Journal of Heterocyclic Chemistry. 2023; 60(4): 537–565. doi: 10.1002/jhet.4586.
19. Pawar A, Mungole AJ, Naktode KS. Biosynthesized ZnO nanoparticles from Rumex nepalensis (Spreng.) plant extract serve as efficient catalysts for the aqueous synthesis of 4H-isoxazol-5-one derivatives. The Bioscan. 2023; 18(1): 21–28. https://thebioscan.com/index.php/pub/article/view/485
20. Pawar AP, Naktode KS, Mungole AJ. Green synthesis of silver nanoparticles from whole plant extract analyzed for characterization, antioxidant, and antibacterial properties. Physics and Chemistry of Solid State. 2023; 24(4): 640–649. doi: 10.15330/pcss.24.4.640-649.
21. Mosallanezhad A, Kiyani H. Green synthesis of arylideneisoxazol-5-ones catalyzed by silicon dioxide nanoparticles. Polycyclic Aromatic Compounds. 2024; 44(8): 5022–5037. doi: 10.1080/10406638.2023.2259564.
22. Maleki B, Chahkandi M, Tayebee R, Kahrobaei S, Alinezhad H, Hemmati S. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Applied Organometallic Chemistry. 2019; 33(10): e5118. doi: 10.1002/aoc.5118.
23. Kiyani H, Mosallanezhad A. Sulfanilic acid-catalyzed synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Current Organic Synthesis. 2018; 15(5): 715–722. doi: 10.2174/1570179415666180423150259.
24. Maleki B, Chahkandi M, Tayebee R, Kahrobaei S, Alinezhad H, Hemmati S. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Applied Organometallic Chemistry. 2019; 33(10): e5118. doi: 10.1002/aoc.5118.
25. Safari J, Ahmadzadeh M, Zarnegar Z. Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. Catalysis Communications. 2016; 86: 91–95. doi: 10.1016/j.catcom.2016.08.018.
26. Shitre GV, Patel AR, Ghogare RS. Green synthesis of 3,4-disubstituted isoxazol-5(4H)-one using gluconic acid aqueous solution as an efficient recyclable medium. 2023. http://doi.org/10.25135/acg.oc.151.2304.2762
27. Bashash Rikani A, Setamdideh D. One-pot and three-component synthesis of isoxazol-5(4H)-one derivatives in the presence of citric acid. Oriental Journal of Chemistry. 2016; 32: 1433–1437. doi: 10.13005/ojc/320317.
28. Liu Q, Hou X. One-pot three-component synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by sodium sulfide. Phosphorus, Sulfur, and Silicon and the Related Elements. 2012; 187: 448–453. doi: 10.1080/10426507.2011.621003.
29. Pawar AP, Naktode KS, Mungole AJ. Efficiently synthesize isoxazol-5(4H)-one derivatives in aqueous medium using CuO nanoparticles catalysis with a biosynthesized approach. Heterocyclic Letters. 2025; 15(2): 377–393. http://heteroletters.org
30. Cheng Q. One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones in aqueous media under ultrasonic irradiation. Chinese Journal of Organic Chemistry. 2009; 29(8): 1267.
31. Vekariya RH, Patel KD, Patel HD. Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]pyrazole derivatives. Research on Chemical Intermediates. 2016; 42: 7559–7579. doi: 10.1007/s11164-016-2553-4.
32. Kiyani H, Darbandi H, Mosallanezhad A, Ghorbani F. Research on Chemical Intermediates. 2015; 41: 7561. doi: 10.1007/s11164-014-1844-x.
33. Khandebharad AU, Sarda SR, Gill CH, Agrawal BR. Synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by tartaric acid in aqueous media. Research Journal of Chemical Sciences. 2015.
34. Pawar AP, Naktode KS, Mungole AJ. Efficiently synthesize isoxazol-5(4H)-one derivatives in aqueous medium using CuO nanoparticles catalysis with a biosynthesized approach. Heterocyclic Letters. 2025; 15(2): 377–393. http://heteroletters.org
35. Setamdideh D. Dowex® 50WX4/H₂O: A green system for a one-pot and three-component synthesis of isoxazol-5(4H)-one derivatives. Journal of the Mexican Chemical Society. 2015; 59: 191–197.
36. Kiyani H, Samimi HA. Nickel-catalyzed one-pot, three-component synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in aqueous medium. Chiang Mai Journal of Science. 2017; 44: 1011–1121.
37. Kalhor M, Samiei S, Mirshokraie SA. MnO₂@Zeolite-Y nanoporous: preparation and application as a highly efficient catalyst for multi-component synthesis of 4-arylidene-isoxazolidinones. Silicon. 2021; 13: 201–210. doi: 10.1007/s12633-020-00413-5.
38. Mirzazadeh M, Mahdavinia GH. Fast and efficient synthesis of 4-arylidene-3-phenylisoxazol-5-ones. E-Journal of Chemistry. 2012; 9: 425–429. doi: 10.1155/2012/562138.
39. Setamdideh D. Dowex® 50WX4/H₂O: A green system for a one-pot and three-component synthesis of isoxazol-5(4H)-one derivatives. Journal of the Mexican Chemical Society. 2015; 59(3): 191–197.
40. Wu M, Feng Q, Wan D, Ma J. CTACl as catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synthetic Communications. 2013; 43(12): 1721–1726. doi: 10.1080/00397911.2012.666315.
41. Mecadon H, Rohman MR, Rajbangshi M, Myrboh B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Letters. 2011; 52(19): 2523–2525. doi: 10.1016/j.tetlet.2011.03.036.
42. Cheng Q. One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones in aqueous media under ultrasonic irradiation. Chinese Journal of Organic Chemistry. 2009; 29(8): 1267.
43. Pourmousavi SA, Fattahi HR, Ghorbani F, Kanaani A, Ajloo D. A green and efficient synthesis of isoxazol-5(4H)-one derivatives in water and a DFT study. Journal of the Iranian Chemical Society. 2018; 15: 455–469. doi: 10.1007/s13738-017-1246-2.
44. Zhang YQ, Ma JJ, Wang C, Li JC, Zhang DN, Zang XH, Li J. Chinese Journal of Organic Chemistry. 2008; 28: 141. doi: 10.3184/174751911X13176501108975.