Author(s):
Kirtesh Pratap Khare, Reena Srivastava, Anurag Srivastava
Email(s):
kirteshkhare01@gmail.com
DOI:
10.52711/0974-4150.2025.00051
Address:
Kirtesh Pratap Khare1,2*, Reena Srivastava2, Anurag Srivastava2
1Department of Biosciences, Acropolis Institute of Management Studies and Research, Madhya Pradesh, Indore.
2Advanced Materials Research Group, Materials Synthesis and Sensor Design Laboratory, ABV-Indian Institute of Information Technology and Management, Gwalior.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
Lung cancer has the highest mortality rate over the years. According to the American Cancer Society, around 1,620 individuals were predicted to die of cancer every day in the United States in 2015 this is roughly equivalent to nearly 590,000 individuals. The death level of lung cancer among males has fallen by 29% over the previous 39 years, while it has risen by 102% among females. There are many methods to sense lung cancer early, but they all are very costly and not user friendly. We develop a carbon nano tube (CNT) based pristine and palladium (Pd) doped sensors for lung cancer pre-diagnosis. There are carbon dioxide (CO2) and radon (Rn) two leading lung cancer gases. To improve the sensing behavior of pristine CNT, Pd is used as a doping agent. The performance of the sensor is evaluated by using DFT based quantum ATK method, in terms of band gap, density of state (DOS), adsorption energy (Eads), recovery time (t), charge transfer, conductance, and sensitivity. The calculated negative adsorption energy confirms the stability of pristine and pd doped CNT and observes the type of interaction with CO2 and Rn, as physical adsorption, that also confirms the reusability of the sensor and its low operational temperature. It has also been observed that the pd-doped CNT has favorable stability with and without presence of CO2 and Rn gas molecules in comparison to pristine CNT, whereas the pd-doped CNT has a better recovery time, sensitivity, and better range of detection.
Cite this article:
Kirtesh Pratap Khare, Reena Srivastava, Anurag Srivastava. Pristine and Pd doped Carbon Nanotube as a Lung Cancer Biomarker for CO2 and Rn gas: A DFT Analysis. Asian Journal of Research in Chemistry. 2025; 18(5):331-6. doi: 10.52711/0974-4150.2025.00051
Cite(Electronic):
Kirtesh Pratap Khare, Reena Srivastava, Anurag Srivastava. Pristine and Pd doped Carbon Nanotube as a Lung Cancer Biomarker for CO2 and Rn gas: A DFT Analysis. Asian Journal of Research in Chemistry. 2025; 18(5):331-6. doi: 10.52711/0974-4150.2025.00051 Available on: https://ajrconline.org/AbstractView.aspx?PID=2025-18-5-6
REFERENCES:
1. Cruz, C. S. Dela; Tanoue, L. T.; Matthay, R. A. Lung Cancer: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2011; 32 (4): 605–644.
2. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA. Cancer J. Clin. 2011; 61 (2): 69–90.
3. Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer Statistics, 2011: The Impact of Eliminating Socioeconomic and Racial Disparities on Premature Cancer Deaths. CA. Cancer J. Clin. 2011; 61 (4): 212–236.
4. Patel, J. D. Lung Cancer in Women. J. Clin. Oncol. 2005; 23 (14): 3212–3218.
5. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M. GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10. Lyon, Fr. Int. Agency Res. Cancer. 2008.
6. Kamangar, F.; Dores, G. M.; Anderson, W. F. Patterns of Cancer Incidence, Mortality, and Prevalence across Five Continents: Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World. J. Clin. Oncol. 2006; 24(14): 2137–2150.
7. Aggarwal, S.; Minhas, S.; Shinde, S.; Ganvir, M. Complete Remission in an Elderly Patient of Advanced-Stage Squamous Cell Carcinoma Lung with Nivolumab: An Exceptional Case Study from India. Int J Case Rep Images. 2017; 9: 51–55.
8. Jemal, A.; Miller, K. D.; Ma, J.; Siegel, R. L.; Fedewa, S. A.; Islami, F.; Devesa, S. S.; Thun, M. J. Higher Lung Cancer Incidence in Young Women than Young Men in the United States. N. Engl. J. Med. 2018; 378 (21): 1999–2009.
9. Herbst, R. S.; Heymach, J. V. LiPPman Sm. Lung Cancer. N Engl J Med. 2008;359 (13): 1367–1380.
10. Blandin Knight, S.; Crosbie, P. A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and Prospects of Early Detection in Lung Cancer. Open Biol. 2017; 7 (9): 170070.
11. Bach, P. B.; Mirkin, J. N.; Oliver, T. K.; Azzoli, C. G.; Berry, D. A.; Brawley, O. W.; Byers, T.; Colditz, G. A.; Gould, M. K.; Jett, J. R. Benefits and Harms of CT Screening for Lung Cancer: A Systematic Review. JAMA. 2012; 307 (22): 2418–2429.
12. Jill Eden, L. L.; Berg, A.; Morton, S. IOM (Institute of Medicine): Finding What Works in Health Care: Standards for Systematic Reviews. Washington, DC: The National Academies Press. 2011.
13. Young, M. T.; Sandler, D. P.; DeRoo, L. A.; Vedal, S.; Kaufman, J. D.; London, S. J. Ambient Air Pollution Exposure and Incident Adult Asthma in a Nationwide Cohort of US Women. Am. J. Respir. Crit. Care Med. 2014; 190 (8): 914–921.
14. Kurt, O. K.; Zhang, J.; Pinkerton, K. E. Pulmonary Health Effects of Air Pollution. Curr. Opin. Pulm. Med. 2016; 22 (2): 138.
15. Hodge, M. X.; Henriquez, A. R.; Kodavanti, U. P. Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. Toxics. 2021; 9 (6): 132.
16. Gan, W. Q.; Koehoorn, M.; Davies, H. W.; Demers, P. A.; Tamburic, L.; Brauer, M. Long-Term Exposure to Traffic-Related Air Pollution and the Risk of Coronary Heart Disease Hospitalization and Mortality. Environ. Health Perspect. 2011; 119(4): 501–507.
17. Andersen, Z. J.; Hvidberg, M.; Jensen, S. S.; Ketzel, M.; Loft, S.; Sørensen, M.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Chronic Obstructive Pulmonary Disease and Long-Term Exposure to Traffic-Related Air Pollution: A Cohort Study. Am. J. Respir. Crit. Care Med. 2011; 183 (4): 455–461.
18. Lim, S. S.; Vos, T.; Flaxman, A. D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M. A.; Amann, M.; Anderson, H. R.; Andrews, K. G. A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2224–2260.
19. Srivastava, R.; Suman, H.; Shrivastava, S.; Srivastava, A. DFT Analysis of Pristine and Functionalized Zigzag CNT: A Case of H2S Sensing. Chem. Phys. Lett. 2019; 731: 136575.
20. Srivastava, A.; Sharma, V.; Kaur, K.; Khan, M. S.; Ahuja, R.; Rao, V. K. Electron Transport Properties of a Single-Walled Carbon Nanotube in the Presence of Hydrogen Cyanide: First-Principles Analysis. J. Mol. Model. 2015; 21 (7): 1–7.
21. Mamalis, A. G.; Vogtländer, L. O. G.; Markopoulos, A. Nanotechnology and Nanostructured Materials: Trends in Carbon Nanotubes. Precis. Eng. 2004; 28 (1): 16–30.
22. Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon Nanotube-A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors Int. 2020; 1: 100003.
23. Jonathan, K. H.; Raju, P. S. A Study on Radon Gas and Lung Cancer Incidence in Indoor Environment in Oman. Int. J. Eng. Appl. Sci. 2016; 3 (12): 257543.
24. Dent, A. G.; Sutedja, T. G.; Zimmerman, P. V. Exhaled Breath Analysis for Lung Cancer. J. Thorac. Dis. 2013, 5 (Suppl 5), S540.
25. Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human Exhaled Air Analytics: Biomarkers of Diseases. Biomed. Chromatogr. 2007; 21(6): 553–566.
26. Guan, Z.; Ni, S.; Hu, S. First-Principles Study of 3d Transition-Metal-Atom Adsorption onto Graphene Embedded with the Extended Line Defect. ACS omega. 2020; 5 (11): 5900–5910.
27. Park, S.; Bae, H.; Ahn, J.; Lee, H.; Kwon, Y. Control of CO2 Capture Process on Transition-Metal-Porphyrin-like Graphene with Mechanical Strain. ACS omega 2018; 3(9): 10554–10563.
28. Mao, Y.; Yang, D.; He, J.; Krasna, M. J. Epidemiology of Lung Cancer. Surg. Oncol. Clin. 2016; 25 (3): 439–445.
29. on Smoking, O.; (US, O. of the S. G. The Health Consequences of Smoking: A Report of the Surgeon General. 2004.
30. (US)., N. C. I. Cigars: Health Effects and Trends; US Department of Health and Human Services, Public Health Service, National. 1998.
31. Yoosefian, M.; Raissi, H.; Mola, A. The Hybrid of Pd and SWCNT (Pd Loaded on SWCNT) as an Efficient Sensor for the Formaldehyde Molecule Detection: A DFT Study. Sensors Actuators B Chem. 2015; 212: 55–62.
32. Yuksel, N.; Kose, A.; Fellah, M. F. Pd, Ag and Rh Doped (8, 0) Single-Walled Carbon Nanotubes (SWCNTs): A DFT Study on Furan Adsorption and Detection. Surf. Sci. 2022; 715: 121939.
33. Kirtesh Pratap Khare, Rachana Kathal, Neelima Shukla, R. S. and A. S. Suitability of ZnO Nanocomposite of Copolymer (PPy-PNVK-ZnO) (PPy = Polypyrrole; PNVK = Poly 9-Vinyl Carbazole) for the Detection of 6-Thioguanine: A DFT Analysis. Asian J. Chem. 2023; 35 (2): 422–430.
34. https://www.synopsys.com/silicon/quantumatk.html.
35. Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density Functional Theory; John Wiley and Sons, 2015.
36. Capelle, K. A Bird’s-Eye View of Density-Functional Theory. Brazilian J. Phys. 2006; 36 (4A): 1318–1343.
37. Kirtesh Pratap Khare, Rachana Kathal, Neelima Shukla, R. S. and A. S. Quantum Molecular Descriptors of 6-Thioguanine Adsorbed PPy-PNVK Conducting Polymer: A DFT Analysis. Asian J. Chem. 2023; 35 (3): 555–562.