Author(s):
Vikram R. Jadhav, J. S. Aher, A. M. Bhagare, M. S. Jamdhade, P. B. Wadhawane
Email(s):
mevikramjadhav@gmail.com
DOI:
10.5958/0974-4150.2020.00076.0
Address:
Vikram R. Jadhav1*, J. S. Aher2, A. M. Bhagare3, M. S. Jamdhade4, and P. B. Wadhawane5
1,3,4,5Department of Chemistry, K. K. Wagh Art’s, Science, and Commerce College, Pimpalgaon (B), 422209, Tal Niphad, Nashik, Maharashtra (India).
2Professor and HOD, Department of Chemistry, K.T. H. M College, Gangapur Road, Nashik, 422002, SPPU, MS (India).
*Corresponding Author
Published In:
Volume - 13,
Issue - 6,
Year - 2020
ABSTRACT:
In this theoretical study, we have mainly focus on the Hückel approximation method. Nowadays many modern methods like computational method, are utilized to understanding the molecular parameters but it has some difficulties such as not easily understood, and non-availability for everywhere, students want to know the molecular parameters then the theoretical methods or technique are preferable and it is conceivable to get secular parameters, p energy, wave functions, electron density, and charge density, as an account of cyclobutadiene system i.e. C4H3+ (cation), C4H3- (anion), and C4H3. (radical). Here, it has presented the secular determinant, and secular equation of the Hückel approximation technique and applied to cyclobutadiene system to communicate their delocalization energies, wave functions, and also its electron, and charge density at each carbon atom in terms of understanding the stable molecular configuration of cyclobutadiene system. It is settled by the Hückel approximation method using assumptions or characteristics such as coulomb integrals, exchange integrals, and overlap integrals. This is a simple way theoretical method, which will be preferable to graduate and post-graduate understudies to understanding the molecular parameters and to investigate the stable configuration of a cyclobutadiene system.
Cite this article:
Vikram R. Jadhav, J. S. Aher, A. M. Bhagare, M. S. Jamdhade, P. B. Wadhawane. Cyclobutadiene System (C4H3+, C4H3-, and C4H3.): A Theoretical Study for Solving Secular Determinant, Delocalization Energy, Electron Density, and Charge Density. Asian J. Research Chem. 2020; 13(6):419-423. doi: 10.5958/0974-4150.2020.00076.0
Cite(Electronic):
Vikram R. Jadhav, J. S. Aher, A. M. Bhagare, M. S. Jamdhade, P. B. Wadhawane. Cyclobutadiene System (C4H3+, C4H3-, and C4H3.): A Theoretical Study for Solving Secular Determinant, Delocalization Energy, Electron Density, and Charge Density. Asian J. Research Chem. 2020; 13(6):419-423. doi: 10.5958/0974-4150.2020.00076.0 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-6-3
REFERENCES:
1. B. R. Puri , L.R. Sharma, M.S. Pathania & Navjot Kaur. Chapter 2. Chemical bonding: molecular quantum mechanics. Principle of Fundamentals of physical chemistry. 2009: pp-131-195.
2. Bally, T., & Masamune, S. (1980). Cyclobutadiene. Tetrahedron, 36(3), 343-370. https://doi.org/10.1016/0040-4020(80)87003-7.
3. Buenker, R. J., & Peyerimhoff, S. D. (1968). Ab initio study on the stability and geometry of cyclobutadiene. The Journal of Chemical Physics, 48(1), 354-373. https://doi.org/10.1063/1.1667929.
4. Cram, D. J., Tanner, M. E., & Thomas, R. (1991). The taming of cyclobutadiene. Angewandte Chemie International Edition in English, 30(8), 1024-1027.https://doi.org/10.1002/anie.199110241
5. Jadhav, V. R. (2018). Straightforward Numerical Method to Understanding the Valence Shell Electron Pair Theory (VSEPR). International Journal of Research & Review, 5(9). DOI: inrein.com/10.4444/ijrr.1002/708.
6. Jadhav, V. R., Soni, S. A., Shinde, S. S., & Pitrubhakta, J. R. Theoretical Approach to Understanding an Electron Density, Charge Density and Most Stable Configuration of H3 System. DOI: inrein.com/10.4444/ijrr.1002/1854.
7. Liang, X., Pu, X., Liao, X., Wong, N. B., & Tian, A. (2008). Theoretical study of structures and properties of cyclobutadiene, cyclopentadiene and benzene and their nitrogen isoelectronic equivalents. Journal of Molecular Structure: THEOCHEM, 860(1-3), 86-94. https://doi.org/10.1016/j.theochem.2008.03.016.
8. Maier, G. (1974). The cyclobutadiene problem. Angewandte Chemie International Edition in English, 13(7), 425-438. https://doi.org/10.1002/anie.197404251.
9. McWeeny, R. (1955). The valence-bond theory of molecular structure-III. Cyclo butadiene and benzene. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 227(1170), 288-312. https://doi.org/10.1098/rspa. 1955.0012.
10. Peter Atkins and Julio de Paula. Physical Chemistry. Eight Edition, Oxford University Press.
11. Mo, Y., Wu, W., & Zhang, Q. (1994). Theoretical resonance energies of benzene, cyclobutadiene, and butadiene. The Journal of Physical Chemistry, 98(40), 10048-10053. https://doi.org/10. 1021/j100091a018.