Author(s):
Raisul Islam, Ekhlass Uddin, Ashrafuzzaman, Nur Amin Bitu, Ali Asraf, Faruk Hossen, M. Haque, Abdul Mannan, Kudrat-E-Zahan
Email(s):
kudrat.chem@ru.ac.bd
DOI:
10.5958/0974-4150.2020.00073.5
Address:
Raisul Islam, Ekhlass Uddin, Ashrafuzzaman, Nur Amin Bitu, Ali Asraf, Faruk Hossen, M. Haque, Abdul Mannan, Kudrat-E-Zahan*
Department of chemistry, Rajshahi University, Bangladesh.
*Corresponding Author
Published In:
Volume - 13,
Issue - 5,
Year - 2020
ABSTRACT:
Acetylacetonate containing Schiff base and their metal complexes has a wide range of applications in microbiology as anti-microbial agents, the chemical industry as catalyst, and is an important chemical in cancer treatement. The extra-ordinary ligating properties of acetylacetonate enable them to form a large number of complex compounds with transition metals, a vast majority of which find abundant applications in potential areas. This has stimulated researchers to explore novel applications of the synthesized ligands and the metal complexes thereof. This review presents a report of the studies on the biological activities, anticancer properties, and catalytic activities of acetylacetonate and their metal complexes.
Cite this article:
Raisul Islam, Ekhlass Uddin, Ashrafuzzaman, Nur Amin Bitu, Ali Asraf, Faruk Hossen, M. Haque, Abdul Mannan, Kudrat-E-Zahan. Recent Advances in Biological and Catalytic Activities of Schiff base containing Acetylacetone and their Metal Complexes - A Short Overview. Asian J. Research Chem. 2020; 13(5):395-406. doi: 10.5958/0974-4150.2020.00073.5
Cite(Electronic):
Raisul Islam, Ekhlass Uddin, Ashrafuzzaman, Nur Amin Bitu, Ali Asraf, Faruk Hossen, M. Haque, Abdul Mannan, Kudrat-E-Zahan. Recent Advances in Biological and Catalytic Activities of Schiff base containing Acetylacetone and their Metal Complexes - A Short Overview. Asian J. Research Chem. 2020; 13(5):395-406. doi: 10.5958/0974-4150.2020.00073.5 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-5-15
REFERENCES:
1. Shamsipur, M., et al., Solid phase extraction of ultra trace copper (II) using octadecyl silica membrane disks modified by a naphthol-derivative Schiff’s base (2000). Analytica Chimica Acta. 408(1-2): 271-277.
2. Reddy, K.K., S. Rao, and B.S. Rao (2015), Synthesis and characterization and biological activities of hydrazones. Int. J. Innov. Res. Sci. Eng. Techno., 4(1). 18944-18952
3. Divya, K., G.M. Pinto, and A.F. Pinto (2017). Application of metal complexes of Schiff bases as an antimicrobial drug: a review of recent works. Int. J. Curr. Pharm. Res. 9(3): 27-30.
4. Qiu, M., et al., Chiral copper (II)-Schiff base complexes as catalysts for asymmetric cyclopropanation of styrene(2001). Chinese Journal of Catalysis. 22(1): 77-80.
5. Yang, Z.-H., et al.(2001). Synthesis of new chiral Schiff bases and their application in the asymmetric trimethylsilylcyanation of aromatic aldehydes. Tetrahedron: Asymmetry. 12(11): 1579-1582.
6. dos Santos, J.E., E.R. Dockal, and E.T. Cavalheiro(2005). Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydrate Polymers. 60(3): 277-282.
7. Alexander, V. (1995). Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chemical Reviews. 95(2): 273-342.
8. Quiroga, A.G. and C.N. Ranninger(2004). Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coordination Chemistry Reviews. 248(1-2): 119-133.
9. Asraf, M.A., et al.(2019). Structural Elucidation, 3D Molecular Modeling and Antibacterial Activity of Ni (II), Co (II), Cu (II) and Mn (II) Complexes Containing Salophen Ligand. Asian Journal of Applied Chemistry Research. 1-15.
10. Sarker, D., et al.(2019). Copper (II) Complex of Salicylaldehyde Semicarbazone: Synthesis, Characterization and Antibacterial Activity. Asian Journal of Chemical Sciences. 1-8.
11. Sarker, D., et al.(2019). Synthesis, Characterization, Antibacterial and Thermal Studies of Cu (II) Complex of Thiophene-2-aldehyde Semicarbazone. Asian Journal of Applied Chemistry Research. 1-10.
12. West, D.X., et al.(1993). Thiosemicarbazone complexes of copper (II): structural and biological studies. Coordination Chemistry Reviews. 123(1-2): 49-71.
13. Wang, T. and Z. Guo (2006). Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Current medicinal chemistry. 13(5): 525-537.
14. Babahan, I., E.P. Coban, and H. Biyik (2013). Synthesis, characterisation and antimicrobial activities of vic-dioxime derivatives containing heteroaromatic hydrazone groups and their metal complexes. Maejo International Journal of Science and Technology. 7(1): 26-41.
15. Ejidike, I.P. and P.A. Ajibade (2015). Synthesis, characterization and biological studies of metal (II) complexes of (3E)-3-[(2-{(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] amino} ethyl) imino]-1-phenylbutan-1-one Schiff base. Molecules. 20(6): 9788-9802.
16. Patil, A.R., et al.(2012).Synthesis, characterization and biological activity of mixed ligand Co (II) complexes of schiff base 2-amino-4-nitrophenol-n-salicylidene with some amino acids. Journal of Chemical and Pharmaceutical Research. 4(2): 1413-1425.
17. Chohan, Z.H., et al.(2010). Metal based biologically active compounds: Design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium (IV) complexes. European journal of medicinal chemistry. 45(7): 2739-2747.
18. Jarrahpour, A., et al.(2007). Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules. 12(8): 1720-1730.
19. Parashar, R., R. Sharma, and G. Mohan(1989). Biological activity of some Schiff bases and their metal complexes. Biological trace element research. 23(1): 145-150.
20. Gaowen, Y., et al.(1995). Synthesis and Antitumor Activity of Schiff Base CoordinationCompounds [J]. chinese journal of applied chemistry. 2.
21. Karem, L.K.A., F.Y. Waddai, and N.H. Karam (2018).Schiff base complexes of some drug substances. Journal of Pharmaceutical Sciences and Research, 10(8): 1912-1917.
22. Blahova, M., et al.(1994). Anti-inflammatory activity of aqua (aryloxyacetato) copper (II) complexes. Pharmazie. 49(5): 373-374.
23. Asraf, M.A., et al.(2019).Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochemical and Photobiological Sciences. 18(11): 2782-2791.
24. Asraf, M.A., et al.(2016). Cobalt salophen complexes for light-driven water oxidation. Catalysis Science and Technology. 6(12): 4271-4282.
25. Asraf, M.A., et al.(2015). Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous? Catalysis Science and Technology. 5(11): 4901-4925.
26. Gupta, K. and A.K. Sutar (2008), Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews.. 252(12-14): 1420-1450.
27. Rehman, M., M. Imran, and M. Arif(2013). Synthesis, Characterization and in vitro Antimicrobial studies of Schiff-bases derived from Acetylacetone and amino acids and their oxovanadium (IV) complexes. American Journal of Applied Chemistry. 1(4): 59-66.
28. Stănilă, A., C. Braicu, and S. Stănilă (2011).Antibacterial activity of copper and cobalt amino acids complexes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 39(2): 124-129.
29. Tai, A.W., et al.(1984). Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents. Journal of medicinal chemistry. 27(2): 236-238.
30. Da Silva, C.M., et al.(2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research. 2(1): 1-8.
31. Kumar, S., D.N. Dhar, and P. Saxena (2009). Applications of metal complexes of Schiff bases-A review. Journal of scientific and industrial research. 68: 181-187.
32. zahid h. chohan , m. arif, muhammad a. akhtar and claudiu t. supuran(2006).metal-based antibacterial and antifungal agents: synthesis, characterization and in vitro biological evaluation of co(ii), cu(ii), ni(ii) and zn(ii) complexes with amino acid derived compounds. bioinorganic chemistry and applications. DOI 10.1155/BCA/2006/83131
33. charity w. dikio, ikechukwu p. ejidike, fanyana m. mtunzi1, michael j. klink, ezekiel d. dikio (2017). hydrazide schiff bases of acetylacetonate metal complexes: synthesis, spectroscopic and biological studies. International Journal of Pharmacy and Pharmaceutical Sciences. 9(12), 257-267.
34. A. V. G. S. Prasad, K Trinagaraju, Boyina Gopala Rao, Y. Usha, P. Sudha Reddy, P. Venkateswara Rao (2013).Synthesis, Characterization And Biological Activity Of Schiff Bases Of Acetylacetone.international journal of innovative research and development. 2: 39-43.
35. Mala Nath, Rakesh Yadav, Marcel Gielen, Hassan Dalil, Dick de Vos and G. Eng(1997). Synthesis, Characteristic Spectral Studies and in vitro Antimicrobial and Antitumour Activities of Organotin(IV) Complexes of Schiff Bases Derived from Amino-acids. applied organometallic chemistry.11:727-736.
36. Waeigh G. Hanna and Mona M. Moawad(2001).Synthesis, characterization and antimicrobial activity of Co(II),Ni(II) and Cu(II) complexes with new assymetrical schiffs base ligands derived from 7-formyanil-substitued diamine sulpoxine and acetylacetone. Transition metal chemistry . 26: 644-651.
37. M. Jafaria, M. Salehia, M. Kubickib, and A. Khaleghian (2018). Crystal Structures and Biological Studies Two Novel Zinc Complexes Derived from para-Vanillin and Acetylacetone. Two New Precursors for Preparation ZnO Nanoparticles. Russian Journal of Coordination Chemistry. 44(1): 21–31.
38. Roya Ranjineh Khojasteh and Sara Jalali Matin (2015). Synthesis, Characterization, and Antibacterial Activities of Some Metal Complexes of Heptadentate Schiff Base Ligand Derived from Acetylacetone. Russian Journal of Applied Chemistry. 88(6): 921−925.
39. Monik Tyagi ,Sulekh Chandra(2012).Synthesis, characterization and biocidal properties of platinum metal complexes derived from 2,6-diacetylpyridine (bis thiosemicarbazone).Open Journal of InorganicChemistry.2: 41-48.
40. S.Sumathi, C.Anitha, P.Tharmaraj, and C.D.Sheela (2011). Spectral, NLO, Fluorescence ,and Biological Activity of Knoevenagel Condensateof β-Diketone Ligands and Their Metal(II) Complexes. International Journal of Inorganic Chemistry. Article ID 154326
41. A.S Mohammed, F. Abubakar and A.E Aye (2017). Synthesis, Characterization and Antifungal Activity of Cobalt (II) Complex with Schiff Base Derived from Acetylacetone and Leucine. IOSR Journal of Applied Chemistry (IOSR-JAC). 10: 68-71.
42. R.B.Sumathi and M.B.Halli (2014). Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation. Bioinorganic Chemistry and Applications. Article ID 942162
43. Mehdi salehi, Masumeh Galini, Maciej Kubicki and Ali Khalegihan(2019). Synthesise and characterization of new Co(III) and Ni (II) complexes derived from acetylacetone and 2-Aminopyridine:A New Precursor For Preparation Of Nanoparticles. Russian Journal of Inorganic Chemistry. 64(1): 18-27.
44. Rajakkani Paulpandiyan , Alagarraj Arunadevi , Natarajan Raman (2017). Role of Knoevenagel condensate pyrazolone derivative Schiff base ligated transition metal complexes in biological assay and cytotoxic efficacy. Appl Organometal Chem. 2017; 31: e3792.
45. Abdul hakim. A. Ahmed., Salima. A. BenGuzzi (2008). Synthesis And Characterization of Some Transition Metals Complexes of Schif Base Derived From Benzidine and Acetylacetone. Journal of Science and Its Applications. 2(1): 83-90.
46. Misbah ur Rehman, Muhammad Imran, Muhammad Arif (2013). Synthesis, Characterization and in vitro Antimicrobial studies of Schiff-bases derived from Acetyl acetone and Amino acids and their Oxovanadium(IV) complexes. American Journal of Applied Chemistry. 1(4): 59-66.
47. Siraj, I. T. and Sadiq, I. A (2016). Synthesis, Characterization and Antimicrobial Activities of a Schiff Base Derived from Phenylalanine and Acetylacetone and its Mn(II), Ni(II) and Cu(II) Complexes. ChemSearch Journal. 7(2): 34 – 39.
48. Abdou SaadEl-Tabl, Moshira Mohamed AbdEl-Waheed, Mohammed Ahmed Wahba, and Nahla AbdEl-Halim Abou El-Fadl (2015). Synthesis, Characterization, and Anticancer Activity of New Metal Complexes Derived from 2-Hydroxy-3(hydroxyimino)-4-oxopentan-2-ylidene)benzohydrazide. Bioinorganic Chemistry and Applications. Article ID 126023
49. Pengfei Zhang, Congmin Wang, Zhirong Chenb and Haoran Li (2011). Acetylacetone–metal catalyst modified by pyridinium salt group applied to the NHPI-catalyzed oxidation of cholesteryl acetate. Catal. Sci. Technol . 1: 1133–1137.
50. Meizhu Rong ,Chong Liu ,Jinyu Han ,Wenbo Sheng ,Yufei Zhang ,Hua Wang(2008). Catalytic Oxidation of Alcohols by a Novel Copper Schiff Base Ligand Derived from Acetylacetonate and L-Leucine in Ionic Liquids. Catal Lett. 125: 52–56.
51. Atsushi sudo, shoji hirayama, takeshi endo (2009). Highly Efficient Catalysts-Acetylacetonato Complexes of Transition Metals in the 4th Period for Ring-Opening Polymerization of 1,3-Benzoxazine. Inc. J Polym Sci Part A: Polym Chem 48: 479—484, 2010.
52. M. Baltes, O. Collart, P. Van Der Voort, and E. F. Vansant(1999). Synthesis of Supported Transition Metal Oxide Catalysts by the Designed Deposition of Acetylacetonate Complexes. langmuir.15: 5841-5845.
53. Anbarasu. g., m. malathy, p. karthikeyan, r. rajavel (2017). Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amine. Journal of Solid State Chemistry. PII: S0022-4596(17)30234-7
54. Shohei Tanaka and Kenta Adachi (2019). A novel efficient catalyst for water-crosslinking reaction of silane-grafted polyolefin system:Specific influence of axially coordinated n-alkylamine ligand on catalytic abilities of metal acetylacetonate complex. Materials Today Communications. doi.org/10.1016/ j.mtcomm.2019.100584
55. M. Salavati-Niasaria, S.H. Banitaba (2003). Alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) bis(2-hydroxyanil)acetylacetone complexes as catalysts for the oxidation of cyclohexene with tert-butylhydroperoxid. Journal of Molecular Catalysis A: Chemical. 201: 43–54.
56. Bipul C. Paul a b , Prashanta Sarkhel a and Raj K. Poddar(1995). synthesis and catalytic activity of ruthenium(ii) complexes containing acetylacetonate. J. Coord. Chem. 36:267-272.
57. Soichiro Murakami, Yusuta Akutsu, Shigeki Habaue, Osamu Haba, Hideyuki Higashimura(2010). Oxidative coupling polymerization of p-alkoxyphenols with Mn(acac)2-ethylenediamine catalysts. Natural Science. 2(8): 803-808.
58. Anna Sachse, Nadia C. Mo 1sch-Zanetti, Ganna Lyashenko, J. Wolfram Wielandt, Kerstin Most, Jo 1rg Magull, Fabio Dall’Antonia, Aritra Pal, and Regine Herbst-Irmer (2007). Rhenium(V) Oxo Complexes with Acetylacetone Derived Schiff Bases: Structure and Catalytic Epoxidation. Inorg. Chem. 46:7129−7135.
59. D.S. Suslova, M.V. Bykova, A.V. Kuzminb, P.A. Abramovc, O.V. Kravchenkoa, M.V. Pakhomovaa, A.V. Rokhina, I.A. Ushakove, V.S. Tkacha(2018). Cationic acetylacetonate palladium complexes/boron trifluoride etherate catalyst systems for polymerization of 5-methoxycarbonylnorbornene. Catalysis Communications.106: 30–35.
60. Amanda L.W, Zhuoying C, Jiaqing H, Yimei Z, Nicholas J.T, and Stephen O’B(2007). Metal Acetylacetonates as General Precursors for the Synthesis of Early Transition Metal Oxide Nanomaterials. Journal of Nanomaterials. Article ID 14858
61. Bingbing L, Zhipeng H, Zhifang J, Rongxian B and Yanlong G (2015). Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4dihydropyrans as dual anchoring reagents and ligand donors. Catal. Sci. Technol. DOI: 10.1039/C5CY01012H.