ABSTRACT:
Adsorption of methylene blue biomass of Prunus cerasus is conducted in batch mode. The effect of various factors such as contact time, adsorbent dosage, initial dye concentration, temperature and pH of dye solution was investigated. The maximum removal of methylene blue dye was attained at 8.0 pH. The adsorption equilibrium was represented with Langmuir, Freundlich and Temkin isotherm models. Langmuir and Tempkin equations were found to have the correlation coefficient value in good agreement. Adsorption of MB onto prunus cerasus followed pseudo second order kinetics. The calculated values of ?H°, ?S° and ?G° were found to be -31.177kJ/mol, 0.1099 KJ/mol and -63.9722 KJ/mol, respectively. The equilibrium data were also fitted to the Freundlich equation. It was observed that the sorption process is spontaneous and exothermic in nature.
Cite this article:
A. A. Kale. Kinetic and Thermodynamic Study of Adsorption Methylene Blue by Nitrated Biomass of Prunus Cerasus. Asian Journal of Research in Chemistry. 2021; 14(4):242-6. doi: 10.52711/0974-4150.2021.00041
Cite(Electronic):
A. A. Kale. Kinetic and Thermodynamic Study of Adsorption Methylene Blue by Nitrated Biomass of Prunus Cerasus. Asian Journal of Research in Chemistry. 2021; 14(4):242-6. doi: 10.52711/0974-4150.2021.00041 Available on: https://ajrconline.org/AbstractView.aspx?PID=2021-14-4-2
REFERENCES:
1. E Weber, N.L. Wolfe Environ Toxicol. Chem. 6: Pp.911–920 (1987).
2. McKay., J. Chem. Tech.Biotechnol., 32.., pp.759–772(1982).
3. D Mall, Upadhyaya. Indian Environ Health. 40(2), pp.177–188 (1998).
4. G. Mc Kay, B. Al-Durl., Colorage Annual: pp.23–28, (1989).
5. R. Singh., B.B Prasad., Ind. National Sci. Acad. 41(Part A, No.2)., pp.163–169 (1975).
6. M. Auta, B.H Hameed, Chem. Eng. J. 171, pp.502–509(2011).
7. Tunc O., Tanacı H., Aksu. Z.J. Hazard.Mater. 163, pp.187–198., (2009).
8. V.K, Gupta, D. Pathania, S Agarwal, P Singh, J. Hazard. Mater. 243.: pp.179–186, (2012).
9. A. A., Kale. International Journal of recycling of organic waste in water. https://link.springer.com/journal/40093, 18. (2013).
10. B.H., Hameed. J. Hazard. Mater. 161. pp.753–759, (2009).
11. M.A. Salleh, D.K Mahmoud., W.A Karim., A Idris, Desalination. 280.., pp.1–13, (2011).
12. K.Y Foo., Bioresour. Technol. 104. pp.679–686, (2012).
13. V.K. Gupta. J. Environ. Manage 90, pp.2313–2342, (2009).
14. A. A., Kale, International Journal of Scientific & Engineering Research 11: Issue 5. ISSN 2229-5518, pp 1319-1331, (2020).
15. 15 I. Langmuir. J. Am. Chem. Soc. 38.pp. 2221–2295, (1916).
16. A.E Nemr., W.O. Abdel, E.S Amany., A. Khaled., J. Hazard. Mater. 161, pp. 102–110, (2009).
17. P.K. Malik., Dyes Pigm. 56.., pp. 239–249, (2003).
18. X.S. Wang, Y Qin. Process Biochem. 40. pp.677–6. (2005).
19. N Barka., S. Qouzal., A. Assabbane, A Nounhan, Y.A Ichou., J. Saudi Chem. Soc. 15, pp.263-267, (2011).
20. J. Iqbal, F.H Watto, M.H Watto, S. R Malik, S. A, Tirmizi, M. Imran and. A.B. Ghangro Arabian J. Chem. 4. Pp.389–395, (2011)
21. E.L Abd., M.M. Latif, A.M., Ibrahim. Desalin. Water Treat. 6.., pp. 252–268. (2009).
22. A. Bhattacharyya, Dyes Pigm. 65.., pp. 51–59. (2005).
23. K.V Kumar., A. Kumara, Biochem. Eng. J. 27. Pp.83–93, (2005).
24. Y.S Ho. G McKay, D.A.J Wase, C.F Foster. Sci. Technol. 18. pp. 639–650, (2000).