Author(s):
Amadou Kouyaté, Akissi Lydie Chantal Koffi, Ollo Kambiré, Ange Privat Ahoussou, Albert Trokourey
Email(s):
amadoukyte@yahoo.fr
DOI:
10.5958/0974-4150.2020.00066.8
Address:
Amadou Kouyaté1*, Akissi Lydie Chantal Koffi1, Ollo Kambiré2, Ange Privat Ahoussou3, Albert Trokourey3
1UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire.
2UFR Sciences et Technologies, Université de Man, BP 20 Man, Côte d'Ivoire.
3Laboratoire de Chimie-Physique, UFR-SSMT, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire.
*Corresponding Author
Published In:
Volume - 13,
Issue - 5,
Year - 2020
ABSTRACT:
In the present work, glasses of molar composition 20.15[(2.038 + x)SiO2-(1.457 - x)Na2O]-2.6P2O5-26.915CaO-0.035SrO were studied in order to assess the influence of the addition of SrO on the physicochemical properties for a better control of their rigidities in therapeutic strategies of bone regeneration. Samples were synthesized by fusion at high temperature and subsequently characterized by X-ray diffraction (XRD), pycnometry and differential scanning calorimetry (DSC). The results indicate that the samples are amorphous. The values of the vitreous transition temperature and density are of the order of magnitude of those of the reference system 20.15 [(2.038+x) SiO2-(1.457-x) Na2O]-2.6P2O5-26.95CaO. Therefore, it appears that the addition of 0.035 % molar of SrO in the base glass does not induce a significant change in the physicochemical and structural properties of the glass.
Cite this article:
Amadou Kouyaté, Akissi Lydie Chantal Koffi, Ollo Kambiré, Ange Privat Ahoussou, Albert Trokourey. Physicochemical characterization of 20.15[(2.038 + x) SiO2-(1.457 - x) Na2O]-2.6P2O5-26.915CaO-0.035SrO system oxide glasses. Asian J. Research Chem. 2020; 13(5):352-356. doi: 10.5958/0974-4150.2020.00066.8
Cite(Electronic):
Amadou Kouyaté, Akissi Lydie Chantal Koffi, Ollo Kambiré, Ange Privat Ahoussou, Albert Trokourey. Physicochemical characterization of 20.15[(2.038 + x) SiO2-(1.457 - x) Na2O]-2.6P2O5-26.915CaO-0.035SrO system oxide glasses. Asian J. Research Chem. 2020; 13(5):352-356. doi: 10.5958/0974-4150.2020.00066.8 Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-5-8
REFERENCES:
1. M. Vallet‐Regí, C. Ragel, A. J. Salinas. Glasses with medical applications. European Journal of Inorganic Chemistry. 2003; 6: 1029-1042.
2. S. M. Salman, S. N. Salama, H. A. Abo-Mosallam. The role of strontium and potassium on crystallization and bioactivity of Na2O–CaO–P2O5–SiO2 glasses. Ceramics International. 2012; 38:(1) 55–63.
3. D. Bellucci, V. Cannillo, A. Sola. An overview of the effects of thermal processing on bioactive glasses. Sci. Sinter. 2010; 42: 307–320.
4. J. Lao, E. Jallot, J. Nedelec. Strontium-Delivering Glasses with Enhanced Bioactivity A New Biomaterial for Antiosteoporotic Applications? Chem. Mater. 2008; 20: 4969-4973.
5. Devis Bellucci, Valeria Cannillo. A novel bioactive glass containing strontium and magnesium with ultrahigh crystallization temperature. 2018; 213: 67-70.
6. P. J. Marie. Laser Technology in Biomimetics: Basics and Applications. Bone 2007; 40: 55–58.
7. M. D. O'Donnell, R. G. Hill. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 2010; 6(7): 2382–2385.
8. Y. C. Fredholm, N. Karpukhina, R. V. Law, R. G. Hill. Strontium containing bioactive glasses: Glass structure and physical properties. Journal of Non-Crystalline Solids. 2010; 356(44-49): 2546–2551.
9. J. Lao, J. M. Nedele, E. Jallot. New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J. Mater. Chem. 2009; 19: 2940–2949.
10. Jincheng Du, Ye Xiang. Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. Journal of Non-Crystalline Solids. 2012; 358(8): 1059 –1071.
11. G. S. Lázaro, S. C. Santos, C. Xavier Resende, E. A. dos Santos. Individual and combined effects of the elements Zn, Mg and Sr on the surface reactivity of a SiO2•CaO•Na2O•P2O5 bioglass system. Journal of Non-Crystalline Solids. 2014; 386: 19–28.
12. E. Dietrich, Oudadesse H., Lucas-Girot A., Le Gal Y., Jeanne S., Cathelineau G. Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. Applied Surface Science. 2008; 255(2): 391–395.
13. A. Kouyate, A. P. Ahoussou, J. Rogez, P. Benigni. Application of Solution Calorimetry to the Prediction of 20.15[(2.038+x) SiO2-(1.457−x) Na2O]-2.6-P2O5-26.95CaO Glass Bioactivity. Advances in Chemical Engineering and Science. 2013; 3: 123-129.
14. M. Ojovan. Configurons: Thermodynamic Parameters and Symmetry Changes at Glass Transition. Entropy; 2008; 10(3): 334-364.
15. D. Boyd, M. R. Towler, S. Watts, R. G. Hill, A. W. Wren, O. M. Clarkin. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses. J. Mater. Sci. Mater. Med. 2008; 19(2): 953-7.
16. Mohamed Atef Cherbib, Ismail Khattecha, Lionel Montagne, Bertrand Revel, Mohamed Jemala. Effect of SrO content on the structure and properties of sodium-strontium metaphosphate glasses. Journal of Physics and Chemistry. 2017; 102: 62–68.
17. Y. C. Fredholm, N. Karpukhina, D. S. Brauer, J. R. Jones, R. V. Law, R. G. Hill. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J. R. Soc. Interface. 2012; 9: 880–889.
18. T. Satyanarayana, I. V. Kityk, M. Piasecki, M.G. Brik, Y. Gandhi, N. Veeraiah, J. Structural investigations on PbO-Sb (2)O(3)-B (2)O(3): CoO glass ceramics by means of spectroscopic and dielectric studies. J. Phys. Condens. Matter. 2009; 21: 245104.
19. F. H. ElBatal, Y. M. Hamdy, S. Y. Marzouk. Gamma ray interactions with V2O5-doped sodium phosphate glasses. Mater. Chem. Phys. 2008; 110(3): 991-1000.