ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Faiza Lehraki, Nadjib Melkemi

Email(s): lehraki_f76@yahoo.fr

DOI: 10.52711/0974-4150.2021.00052   

Address: Faiza Lehraki, Nadjib Melkemi
Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Mohamed Khider Biskra, Algeria.
*Corresponding Author

Published In:   Volume - 14,      Issue - 5,     Year - 2021


ABSTRACT:
This study aims to explore the effects of solvent polarity on the geometry, energy of solvation, dipole moment, polarizability, charge distribution, frontier molecular orbital analysis, and global, local, and dual descriptors for ß Carboline. The effects of eight solvents were treated using a conductor-like polarized continuum model. Density Functional Theory calculations were performed at B3LYP level at 6-311++g (d,p) basis set. The computed results showed that the dipole moment, polarizability, the solvation free energy, and atomic charge of ß Carboline increased with the increasing polarity of the solvent. Also, the solvation modified the values of the reactivity descriptors as a result of the interaction between the solvent and ß Carboline. The dual descriptor provided a clearer difference between electrophilic and nucleophilic attack at specific atomic site than presented by Fukui functions of ß Carboline.


Cite this article:
Faiza Lehraki, Nadjib Melkemi. Solvent effect on the Molecular structure and Global, Local and Dual Descriptors: A Density Functional Theory Study. Asian Journal of Research in Chemistry. 2021; 14(5): 305-5. doi: 10.52711/0974-4150.2021.00052

Cite(Electronic):
Faiza Lehraki, Nadjib Melkemi. Solvent effect on the Molecular structure and Global, Local and Dual Descriptors: A Density Functional Theory Study. Asian Journal of Research in Chemistry. 2021; 14(5): 305-5. doi: 10.52711/0974-4150.2021.00052   Available on: https://ajrconline.org/AbstractView.aspx?PID=2021-14-5-1


REFERENCES:
1.    Monard G. Rivail J L. Solvent Effects in Quantum Chemistry. Handbook of Computational Chemistry. Springer, Cham, 2017; pp.727–739.
2.    Malmberg C G.  Maryott A A. Dielectric Constant of Water from 0° to 100 °C. Journal of Research of the National Bureau of Standards. 1956; 56(1): 1-8.
3.    Domingo L R. Ríos-Gutiérrez M. and. Pérez P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules. 2016; 21(6): 1-22.
4.    Rahul K. Sourav P. Effect of Solvents Having Different Dielectric Constants on Reactivity: A Conceptual DFT Approach. International Journal of Quantum Chemistry. 2010; 110:1642-1647.
5.    Meneses L. Fuentealba P. and. Contreras R. On the Variations of Electronic Chemical Potential and Chemical Hardness Induced by Solvent Effects. Chemical Physics Letters. 2006; 433: 54–57.
6.    Hassan M F. Ayyash, A N. Study of Spectral and Molecular Properties of Polyatomic molecule by Semi empirical and DFT Methods. Asian Journal of Research in Chemistry. 2019; 12(6): 330-334.
7.    Lashgari A. Ghammamy S.  Shahsavari M. Theoretical and Density Functional Theory (DFT) studies for the organic compound: 2-Amino-6-chloro-N-methylbenzamide. Asian Journal of Research in Chemistry. 2014; 7(7): 677-680.
8.    HyperChem v8. Molecular Modelling System. Hypercube Inc. 1115 NW 4th Street, Gainesville, FL32601, USA. 2009.
9.    Simm G N. Türtscher P L. and. Reiher M. Systematic Microsolvation Approach with a Cluster-Continuum Scheme and Conformational Sampling. Journal of Computational Chemistry. 2020; 41(12): 1144–1155.
10.    Takano Y. Houk K N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules, Journal of Chemical Theory and Computation. 2005; 1(1): 70–77.
11.    Becke A D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. Journal of Chemical Physics. 1993; 98(2): 1372–1377.
12.    Kumari B J. and Reji T A F. Spectroscopic Investigation, HOMO-LUMO and Mulliken analysis of 2-[2-(Butylamino-4-phenylaminothiazol)-5-oyl]benzothiazole by DFT study. Asian Journal of Research in Chemistry. 2017; 10(6): 819-826.
13.    Lee C. Yang W. and. Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B. 1988; 37(2): 785-789.
14.    Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalman I G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Keith T. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas O. Foresman JB. Ortiz JV. Cioslowski J. and. Fox DJ. Gaussian 09, Gaussian Inc, Wallingford. 2010.
15.    Dennindton R. keith T. and. Millam J. Gaussview version 5, J. Semichem Inc., Shawnee Mission KS, 2009.
16.    Ghammamy S. Sohrabi N. Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the C13H10N4O2S Compounds. Asian J. Research Chem. 2013; 6(2): 114-116.
17.    Mohammad FK. Ridwan BR. Medium Effect on Solvation Free Energy, Dipole Moment and Molecular Reactivity of Naproxen. Journal of Theoretical and Computational Science. 2015; 2(134): 1–5.
18.    Ho J. Ertem M Z. Calculating Free Energy Changes in Continuum Solvation Models. The Journal of Physical Chemistry B. 2016; 120 (7): 1319–1329.
19.    Hatua K. Nandi P K. Relationships Between Different-Order Polarizabilities and Ground State Dipole Moment. Journal of Theoretical and Computational Chemistry. 2013; 12(1): 1-25.
20.    Targema M. Obi-Egbedi N O. and. Adeoye M D. Molecular Structure and Solvent Effects on the Dipole Moments and Polarizabilities of some Aniline Derivatives. Computational and Theoretical Chemistry. 2013; 1012: 47–53.
21.    Hemachandran K. Anbusrinivasan P. Ramalingam S. Aarthi R. and. Nithya C K. Structural Activity Analysis, Spectroscopic Investigation, Biological and Chemical Properties Interpretation on Beta Carboline Using Quantum Computational Methods. Heliyon. 2019; 5(11): 1-15.
22.    Lin T Y. Chaudhari A. and. Lee S L. Correlation Between Substituent Constants and Hyperpolarizabilities for Di-substituted Trans-Azobenzenes. Journal of Molecular Modeling. 2013; 19(2): 529–538.
23.    Blair S A. Thakkar A J. Relating Polarizability to Volume, Ionization Energy, Electronegativity, Hardness, Moments of Momentum, and other Molecular Properties. The Journal of Chemical Physics. 2014; 141(7): 1-6.
24.    Soares J V B. Valverde C. da Silva A D. Luz B V. dos Santos D J A. Carvalho E G B. Oliveira Y C M. Napolitano H B. Baseia B. and. Osório F A P. Theoretical Study of Solvent Effects on the Hyperpolarizabilities of Two Chalcone Derivatives. Revista Colombiana de Química. 2020; 49(1): 33–39.
25.    Mei Y. Simmonett A C. Pickard IV F C. DiStasio Jr R A. Brooks B R. and. Shao Y. On the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions. The Journal of Physical Chemistry A. 2015; 119(22): 5865–5882.
26.    Sangeetha S. and Reji T F. Molecular Geometry, Vibrational Assignments, HOMO-LUMO, Mulliken’s charge analysis and DFT Calculations of 2-(2-Phenylaminothiazole-5-oyl)1- methyl-6-methylbenzimidazole. Asian Journal of Research in Chemistry. 2018; 11(6): 848-856.
27.    Singh N. and Ahmad A. Spectrophotometric and Spectroscopic studies of charge transfer complexes of Benzamide as an electron donor with Picric acid as an electron acceptor in different polar solvents. Asian Journal of Research in Chemistry. 2013; 6(6): 560-569.
28.    Ghiasi R. Nemati M. and. Hakimioun A H. Solvent Effect on the Structural, Electronic, Spectra Properties and First Hyperpolarizability of W (CO) 5L, L=(4-pyridylmethylene) Malononitrile. Journal of the Chilean Chemical Society. 2016; 61(2): 2921–2928.
29.    Jayanna N D. An efficient synthesis of 2-(6-methoxy-2-napthyl)-1,3-benzoxazole derivatives using IBD/LTA: Reactivity, DFT, Anticancer and Larvicidal activities. Asian Journal of Research in Chemistry. 2020; 13(5): 312-318.
30.    Mohammed H K. and Ayyash A N. Vibrational Spectroscopy, Molecular properties, IR, UV-Visible, NMR Spectra and (HF, DFT) Calculations of Organic Molecule. Asian Journal of Research in Chemistry. 2019; 12(5): 274-277.
31.    Sangeetha S. and Reji T F. Synthesis, Characterization and DFT studies of 2-(2-phenylaminothiazole-5-oyl)-N-methyl-6-chlorobenzimidazole. Asian Journal of Research in Chemistry. 2018; 11(6): 863-870.
32.    Lewars E. Computational Chemistry. Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2003.
33.    Parr R G. Donnelly R A. Levy M. and. Palke W E. Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics. 1977; 68(8): 3801–3807.
34.    Parr R G. Pearson R G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American chemical society. 1983; 105(26): 7512–7516.
35.    Pearson R G. Chemical Hardness and Density Functional Theory. Journal of Chemical Sciences. 2005; 117(5): 369–377.
36.    Parr R G. Density‐Functional Theory of Atoms and Molecules. Horizons of Quantum Chemistry. 1980; pp. 5-15.
37.    Chattaraj P K. Nath S. and Maiti B.  Reactivity Descriptors. Marcel Dekker, New York, 2003; pp. 295-322.
38.    Pokharia S A. Density Functional Theory (DFT) study on di-n-Butyltin (IV) Derivative of Glycyltryptophane. Asian Journal of Research in Chemistry.2016; 9(2): 53-61.
39.    Meneses L. Fuentealba P. and. Contreras R. On the Variations of Electronic Chemical Potential and Chemical Hardness Induced by Solvent Effects. Chemical physics letters. 2006; 433: 54–57.
40.    De Luca G. Sicilia E. Russo N. and. Mineva T. On the Hardness Evaluation in Solvent for Neutral and Charged Systems. Journal of the American Chemical Society. 2002; 124(7): 1494–1499.
41.    Serdaroğlu G. Elik M. A Computational Study Predicting the Chemical Reactivity Behavior of 1-Substituted 9- ethyl- βCCM Derivatives: DFT - Based Quantum Chemical Descriptors. Turkish Computational and Theoretical Chemistry. 2018; 2(1): 1–11.
42.    Domingo L R. Jose M. Aurell Â. Pe Ârez P. and. Contreras R. Quantitative Characterization of the Global Electrophilicity Power of common Diene/Dienophile Pairs in Diels–Alder Reactions. Tetrachedron. 2002; 58: 4417-4423.
43.    Geerlings P, De Proft F, and Langenaeker W. Conceptual Density Functional Theory. Chemical Reviews. 2003; 103(5): 1793-1874.
44.    Chattaraj P K, Roy D R. Update 1 of: Electrophilicity Index. Chemical Reviews. 2007; 107(9): PR46-PR74.
45.    Parr R G. Yang W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. Journal of the American Chemical Society. 1984; 106(14): 4049-4050.
46.    Yang W. Mortier W J. The use of Global and Local Molecular Parameters for the Analysis of the Gas-phase Basicity of Amines. Journal of the American Chemical Society. 1986; 108(19): 5708-5711.
47.    Martínez-Araya J I. Why is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions?. Journal of Mathematical Chemistry. 2015; 53(2): 451–465.
48.    Morell C. Grand A. and. Toro-Labbé A. New Dual Descriptor for Chemical Reactivity. Journal of Physical Chemistry. 2005; 109(1): 205–212.
49.    Morell C. Grand A. and. Toro-Labbé A. Theoretical Support for Using the Δf(r) Descriptor. Chemical Physics Letters. 2006; 425(4): 342–346.
50.    Martínez-Araya J I. Revisiting Caffeate’s Capabilities as a Complexation Agent to Silver Cation in Mining Processes by means of the Dual Descriptor-A Conceptual DFT Approach. Journal of Molecular Modeling. 2012; 18(9): 4299–4307.
51.    Vidhya V. Austine A. and. Arivazhagan M. Molecular Structure, Aromaticity, Vibrational Investigation and Dual Descriptor For chemical Reactivity on 1-Chloroisoquinoline Using Quantum Chemical Studies. Results in Materials. 2020; 6: 1-17.

Recomonded Articles:

Author(s): Ilhem Djaghout, Rabah Ksouri, Rafik Maizi, Abdel Ghani Boudjahem, Meryem Derdare

DOI: 10.52711/0974-4150.2022.00074         Access: Open Access Read More

Author(s): Nishant T. Tayade, Purushottam R. Arjunwadkar

DOI: 10.5958/0974-4150.2018.00073.1         Access: Open Access Read More

Author(s): Tanveer Hasan, Raza Murad Ghalib, Sayed Hasan Mehdi, P. K. Singh, S. S. R. Baqri

DOI: 10.5958/0974-4150.2017.00132.8         Access: Open Access Read More

Author(s): Jeetendra Bhawsar, P.K. Jain, Preeti Jain, Mukta Rani Bhawsar

DOI:         Access: Open Access Read More

Author(s): Banti Ganguly, R.K. Nath

DOI:         Access: Open Access Read More

Author(s): Amir Lashgari, Shahriar Ghammamy, Masomeh Shahsavari

DOI:         Access: Open Access Read More

Author(s): Tessema Bashaye Tafesse

DOI: 10.5958/0974-4150.2015.00093.0         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags