Author(s):
Hillary Kiprotich, Esther W. Nthiga, Douglas O. Onyancha
Email(s):
hillary.kipro998@gmail.com
DOI:
10.52711/0974-4150.2024.00038
Address:
Hillary Kiprotich*, Esther W. Nthiga, Douglas O. Onyancha
Chemistry Department, Dedan Kimathi University of Technology, Private Bag – 10143, Dedan Kimathi, Nyeri – Kenya.
*Corresponding Author
Published In:
Volume - 17,
Issue - 4,
Year - 2024
ABSTRACT:
Hydrogels have demonstrated an array of potential as a medium throughout the last century for a range of applications. Synthetic polymers currently dominate hydrogel fabrication research and industry. It turns out that these synthetic polymers are not biodegradable posing serious environmental problems therefore finding a sustainable substitute for polysaccharide-based high-performance hydrogel synthesis is imperative. Utilising biopolymers produced from polysaccharides to produce high-performance hydrogels reduces environmental pollution and manufacturing costs. The most common organic polymer found in nature, cellulose has a wide range of applications despite being poorly soluble in most organic solvents including water. A cellulose pulp was produced by pre-treating the waste papers with double alkali and acid hydrolysis, which eliminated the lignin and hemicellulose, respectively. This pulp was then characterised using a Scanning Electron Microscope (SEM) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR). The cellulose pulp's FT-IR spectrum showed no peak at 2957, 2886, 1513, and 1430 cm-1, confirming that there was neither lignin nor hemicellulose present. The resulting cellulose pulp was dissolved in an 8:6.5:8 weight percent solution of sodium hydroxide, urea, and thiourea to form a self-standing cellulose hydrogel without the requirement for a cross-linker. Carboxymethyl cellulose (CMC) was then added as an agent for gelling and refrigerated at -20°C. ATR-FTIR and SEM were used to characterise the uncross-linked cellulose hydrogel (UCH) that was generated. To improve the mechanical, swelling, and stability properties of UCH, cross-linked cellulose hydrogel (CCH) was made by crosslinking the UCH with glutaraldehyde (GA). The CCH was evaluated using FT-IR and SEM-EDX. The analysis of ATR-FTIR and SEM micro-image data added to the evidence supporting the existence of a chemical cross-linking reaction between GA and cellulose. A preliminary test was carried out utilising the tea-bag method at a predetermined time to investigate the impact of cellulose alteration on each hydrogel's capacity to swell.
Cite this article:
Hillary Kiprotich, Esther W. Nthiga, Douglas O. Onyancha. Fabrication and Characterisation of Cross-linked Cellulose hydrogel from Residual papers. Asian Journal of Research in Chemistry. 2024; 17(4):209-6. doi: 10.52711/0974-4150.2024.00038
Cite(Electronic):
Hillary Kiprotich, Esther W. Nthiga, Douglas O. Onyancha. Fabrication and Characterisation of Cross-linked Cellulose hydrogel from Residual papers. Asian Journal of Research in Chemistry. 2024; 17(4):209-6. doi: 10.52711/0974-4150.2024.00038 Available on: https://ajrconline.org/AbstractView.aspx?PID=2024-17-4-5
REFERENCES:
1. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021; 10: 935-952. doi:10.1016/j.jmrt.2020.12.012
2. Alvarez Igarzabal CI, Arrua RD. Crosslinking reactions and swelling behavior of matrices based on N-acryloyl-TRIS(hydroxymethyl)aminomethane. Polym Bull. 2005; 55(1-2): 19-29. doi:10.1007/s00289-005-0411-4
3. Naik S, T VK, Nayak A, Joshi M, K GP. Hydrogels for Cancer Drug Delivery. Res J Pharm Technol. 2020; 13(8): 4023-4027. doi:10.5958/0974-360X.2020.00711.8
4. Ahmad DFBA, Wasli ME, Tan CSY, Musa Z, Chin SF. Eco-friendly cellulose-based hydrogels derived from wastepapers as a controlled-release fertilizer. Chem Biol Technol Agric. 2023; 10(1): 36. doi:10.1186/s40538-023-00407-6
5. Alam MN, Islam MdS, Christopher LP. Sustainable Production of Cellulose-Based Hydrogels with Superb Absorbing Potential in Physiological Saline. ACS Omega. 2019; 4(5): 9419-9426. doi:10.1021/acsomega.9b00651
6. Bhadani R, Mitra UK. Synthesis and Characterization of Polyacrylamide Hydrogels. Asian J Res Chem. 2014; 7(3): 345-348. Accessed June 23, 2024. https://ajrconline.org/ AbstractView.aspx?PID=2014-7-3-20
7. Rani ER, Ramadevi M, Usha AL. An Overview on Hydrophilic three-Dimensional Networks: Hydrogels. Asian J Pharm Res. 2021; 11(1): 23-28. doi:10.5958/2231-5691.2021.00006.X
8. Sharma A, Kaur J, Goyal A. Carbopol 940 Vs Carbol 904: A better Polymer for Hydrogel Formulation. Res J Pharm Technol. 2021; 14(3): 1561-1564. doi:10.5958/0974-360X.2021.00275.4
9. Bashir S, Hina M, Iqbal J, et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020; 12(11): 2702. doi:10.3390/polym12112702
10. Bhadani R, Mitra UK, Jayaswal R. SO2 Initiated polymerization of Acrylamide and studies on hydrogels based on resulting Polyacrylamide. Asian J Res Chem. 2019; 12(5): 258-262. doi:10.5958/0974-4150.2019.00048.8
11. Zhang Y, Sun X, Ye Y, et al. All-cellulose hydrogel with ultrahigh stretchability exceeding 40000%. Mater Today. 2024; 74: 67-76. doi:10.1016/j.mattod.2024.02.007
12. Shaikh MMM, Patil AS, Ajure PL, Lonikar SV. Starch-Acrylic Acid Hydrogel: Preparation and Swelling Characteristics. Res J Sci Technol. 2014; 6(2): 75-78. Accessed July 1, 2024. https://rjstonline.com/AbstractView.aspx?PID=2014-6-2-4
13. Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater. 2018; 7: 153-174. doi:10.1007/s40204-018-0095-0
14. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 2015; 18(1): 53-75. doi:10.1039/C5GC02396C
15. Chen W, Yuan S, Shen J, Chen Y, Xiao Y. A Composite Hydrogel Based on Pectin/Cellulose via Chemical Cross-Linking for Hemorrhage. Front Bioeng Biotechnol. 2021; 8: 627351. doi:10.3389/fbioe.2020.627351
16. Bhadani R, Gupta SKS, Mitra UK. Starch – g – Polyacrylamide based Hydrogels, Graft Copolymerization initiated by NO2. Asian J Res Chem. 2018; 11(1): 103-108. doi:10.5958/0974-4150.2018.00021.4
17. Saha S, Kaushik K, Garg R. Formulation of Smart Hydrogel beads for Pharmaceutical Importance. Res J Pharm Technol. 2020; 13(2): 904-904. doi:10.5958/0974-360X.2020.00170.5
18. Joshi G, Rana V, Naithani S, Varshney VK, Sharma A, Rawat JS. Chemical modification of waste paper: An optimization towards hydroxypropyl cellulose synthesis. Carbohydr Polym. 2019; 223: 115082. doi:10.1016/j.carbpol.2019.115082
19. Adhikari CR, Parajuli D, Inoue K, Ohto K, Kawakita H, Harada H. Recovery of precious metals by using chemically modified waste paper. New J Chem. 2008; 32(9): 1634-1641. doi:10.1039/B802946F
20. Karthika S, Andal NM. Investigation on Physico-Chemical Characteristics of Pulp and Paper Industrial Discharges into the Environs. Asian J Res Chem. 2021; 14(2): 115-119. doi:10.5958/0974-4150.2021.00021.3
21. Danial WH, Abdul Majid Z, Mohd Muhid MN, Triwahyono S, Bakar MB, Ramli Z. The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym. 2015; 118: 165-169. doi:10.1016/j.carbpol.2014.10.072
22. Kundu R, Mahada P, Chhirang B, Das B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr Res Green Sustain Chem. 2022; 5: 100252. doi:10.1016/j.crgsc.2021.100252
23. Ban MT, Mahadin N, Abd Karim KJ. Synthesis of hydrogel from sugarcane bagasse extracted cellulose for swelling properties study. Mater Today Proc. 2022; 50: 2567-2575. doi:10.1016/ j.matpr.2021.08.342
24. Lee JW, Kim JY, Jang HM, Lee MW, Park JM. Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Bioresour Technol. 2015; 182: 296-301. doi:10.1016/j.biortech.2015.01.116
25. Arora B, Tandon R, Attri P, Bhatia R. Chemical Crosslinking: Role in Protein and Peptide Science. Curr Protein Pept Sci. 2017; 18(9): 946-955. doi:10.2174/1389203717666160724202806
26. Aswathy SH, NarendraKumar U, Manjubala I. Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications. Polymers. 2022; 14(21): 4669. doi:10.3390/ polym14214669
27. Naik ER, Reddy KVR, Swetha N. Super Porous Hydrogels. Res J Pharm Technol. 2019; 12(1): 434-442. doi:10.5958/0974-360X.2019.00079.9
28. Ye D, Chang C, Zhang L. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Biomacromolecules. 2019; 20(5): 1989-1995. doi:10.1021/acs.biomac.9b00204
29. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021; 10: 935-952. doi:10.1016/j.jmrt.2020.12.012
30. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2004; 57(1): 19-34. doi:10.1016/s0939-6411(03)00161-9
31. Bhadani R. Electrochemical Synthesis of Polyacrylamide Hydrogels - Metalnanoparticles Composites. Asian J Res Chem. 2014; 7(6): 593-595. Accessed June 23, 2024. https://ajrconline.org/ AbstractView.aspx?PID=2014-7-6-9
32. Chin SF, Jong SJ, Yeo JJ. Optimization of Cellulose-Based Hydrogel Synthesis Using Response Surface Methodology. Biointerface Res Appl Chem. 2022; 12(6): 7136-7146.
33. Kundu R, Mahada P, Chhirang B, Das B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr Res Green Sustain Chem. 2022; 5: 100252. doi:10.1016/j.crgsc.2021.100252
34. Ahmad D, Wasli ME, Tan C, Musa Z, Chin S. Eco-friendly cellulose-based hydrogels derived from wastepapers as a controlled-release fertilizer. Chem Biol Technol Agric. 2023; 10. doi:10.1186/s40538-023-00407-6
35. Reddy N, Tan Y, Li Y, Yang Y. Effect of Glutaraldehyde Crosslinking Conditions on the Strength and Water Stability of Wheat Gluten Fibers. Macromol Mater Eng. 2008; 293(7): 614-620. doi:10.1002/mame.200800031
36. Reddy KVR, Nagabhushanam MV, Naik ER. Swellable hydrogels and cross linking Agents - Their role in drug delivery system. Res J Pharm Technol. 2017; 10(3): 937-943. doi:10.5958/0974-360X.2017.00172.X
37. Zhang Y, Zhu PC, Edgren D. Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res. 2010; 17(5): 725-730. doi:10.1007/s10965-009-9362-z
38. Ban MT, Mahadin N, Abd Karim KJ. Synthesis of hydrogel from sugarcane bagasse extracted cellulose for swelling properties study. Mater Today Proc. 2022; 50: 2567-2575. doi:10.1016/ j.matpr.2021.08.342
39. Ahmad DFBA, Wasli ME, Tan CSY, Musa Z, Chin SF. Eco-friendly cellulose-based hydrogels derived from wastepapers as a controlled-release fertilizer. Chem Biol Technol Agric. 2023; 10(1): 36. doi:10.1186/s40538-023-00407-6
40. Kian LK, Jawaid M, Ariffin H, Alothman OY. Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol. 2017; 103: 931-940. doi:10.1016/ j.ijbiomac.2017.05.135
41. Yang X, Li L, Zhao W, et al. Characteristics and Functional Application of Cellulose Fibers Extracted from Cow Dung Wastes. Materials. 2023; 16(2): 648. doi:10.3390/ma16020648
42. Shaikh MMM, Lonikar MS, Lonikar SV. Gum acacia-acrylic acid hydrogels: pH sensitive materials for drug delivery system. Asian J Res Chem. 2014; 7(4): 407-411. Accessed June 23, 2024. https://ajrconline.org/AbstractView.aspx?PID=2014-7-4-10
43. Khan B, Ashraf U, Tariq A, Mamoona, Rehmana. ynthesis and Characterization of Ter-Butyl Chloride and Its Derivatives (Ter-Butyl Zinc Chloride and Ter-Butyl Lead Chloride) By Using TLC, FTIR, UV/VIS and GC/MS Techniques. Asian J Res Chem. 2010; 3(4): 1011-1014. Accessed June 23, 2024. https://ajrconline.org/ AbstractView.aspx?PID=2010-3-4-46
44. Romruen O, Karbowiak T, Tongdeesoontorn W, Shiekh KA, Rawdkuen S. Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand. Polymers. 2022; 14(9): 1830. doi:10.3390/polym14091830
45. Panwar S, Loonker S. Synthesis of Novel Film of Poly Vinyl Alcohol Modified Guar Gum with Tamarind seed Kernel Powder and its Characterization. Asian J Res Chem. 2017; 10(5): 616-620. doi:10.5958/0974-4150.2017.00103.1
46. Trilokesh C, Uppuluri KB. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep. 2019; 9(1): 16709. doi:10.1038/s41598-019-53412-x
47. Rana MS, Rahim MA, Mosharraf MP, et al. Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis. Polymers. 2023; 15(6): 1530. doi:10.3390/polym15061530
48. Mahale SM, Goswami-Giri AS. Development of Renewable Matrix (Lignin) from Mango Wastes and It’s FT-IR Spectroscopic Prediction. Asian J Res Chem. 2011; 4(10): 1635-1637. Accessed June 23, 2024. https://ajrconline.org/ AbstractView.aspx?PID=2011-4-10-33
49. Sun XF, Xu F, Sun RC, Fowler P, Baird MS. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res. 2005; 340(1): 97-106. doi:10.1016/ j.carres.2004.10.022
50. Tanpichai S, Phoothong F, Boonmahitthisud A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep. 2022; 12(1): 8920. doi:10.1038/s41598-022-12688-2
51. Boufas S, Benhamza MEH, Seghir BB, Hadria F. Synthesis and Characterization of Chitosan/Carrageenan/Hydroxyethyl cellulose blended gels. Asian J Res Chem. 2020; 13(3): 209-215. doi:10.5958/0974-4150.2020.00040.1
52. Saleem MA, Kulkurni RV, G PN. Formulation and Evaluation of Chitosan Based Polyelectrolyte Complex Hydrogels for Extended Release of Metoprolol Tartrate. Res J Pharm Technol. 2011; 4(12): 1844-1851. Accessed July 1, 2024. https://rjptonline.org/ AbstractView.aspx?PID=2011-4-12-3
53. Zhu Q, Zhou R, Liu J, Sun J, Wang Q. Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. Nanomaterials. 2021; 11(5): 1353. doi:10.3390/ nano11051353
54. Chen S, Liu M, Jin S, Chen Y. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci. 2005; 98(4): 1720-1726. doi:10.1002/app.22348
55. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym. 2012; 87(3): 2038-2045. doi:10.1016/j.carbpol.2011.10.017
56. Ahmad DFBA, Wasli ME, Tan CSY, Musa Z, Chin SF. Eco-friendly cellulose-based hydrogels derived from wastepapers as a controlled-release fertilizer. Chem Biol Technol Agric. 2023; 10(1): 36. doi:10.1186/s40538-023-00407-6
57. Jeon JG, Kim HC, Palem RR, Kim J, Kang TJ. Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater Lett. 2019; 250: 99-102. doi:10.1016/ j.matlet.2019.05.002
58. Hou T, Guo K, Wang Z, et al. Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellulose. 2019; 26(8): 5065-5074. doi:10.1007/s10570-019-02433-w
59. Hossen MR, Talbot MW, Kennard R, Bousfield DW, Mason MD. A comparative study of methods for porosity determination of cellulose based porous materials. Cellulose. 2020; 27(12): 6849-6860. doi:10.1007/s10570-020-03257-9
60. Dong M, Wang S, Xu F, Xiao G, Bai J. Efficient utilization of waste paper as an inductive feedstock for simultaneous production of cellulase and xylanase by Trichoderma longiflorum. J Clean Prod. 2021; 308: 127287. doi:10.1016/j.jclepro.2021.127287
61. Al Kamzari SMA, Nageswara Rao L, Lakavat M, Gandi S, Reddy P S, Kavitha Sri G. Extraction and characterization of cellulose from agricultural waste materials. Mater Today Proc. 2023; 80: 2740-2743. doi:10.1016/j.matpr.2021.07.030
62. Wan Ishak WH, Ahmad I, Ramli S, Mohd Amin MCI. Gamma Irradiation-Assisted Synthesis of Cellulose Nanocrystal-Reinforced Gelatin Hydrogels. Nanomaterials. 2018; 8(10): 749. doi:10.3390/nano8100749
63. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes. Membranes. 2015; 5(4): 810-823. doi:10.3390/membranes5040810
64. Ooi SY, Ahmad I, Amin MohdCIM. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod. 2016; 93: 227-234. doi:10.1016/j.indcrop.2015.11.082
65. Shan S, Sun XF, Xie Y, Li W, Ji T. High-Performance Hydrogel Adsorbent Based on Cellulose, Hemicellulose, and Lignin for Copper(II) Ion Removal. Polymers. 2021; 13(18): 3063. doi:10.3390/polym13183063
66. Park S, Oh Y, Jung D, Lee SH. Effect of Cellulose Solvents on the Characteristics of Cellulose/Fe2O3 Hydrogel Microspheres as Enzyme Supports. Polymers. 2020; 12(9): 1869. doi:10.3390/ polym12091869
67. Ratnayaka DD, Brandt MJ, Johnson M. Water Supply. Butterworth-Heinemann; 2009.
68. Kumar R, Gohil KJ. Hydrodynamically Balanced Capsule of Famotidine: An Improved Delivery via Gastroretentive Hydrogels. Res J Pharm Technol. 2021; 14(9): 4573-4579. doi:10.52711/0974-360X.2021.00795
69. parhi R. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Adv Pharm Bull. 2017; 7(4): 515-530. doi:10.15171/ apb.2017.064
70. John D, Charyulu RN, S RG, Jose J. Nanosponge Based Hydrogels of Etodolac for Topical Delivery. Res J Pharm Technol. 2020; 13(8): 3887-3892. doi:10.5958/0974-360X.2020.00688.5
71. Nasution H, Harahap H, Dalimunthe NF, et al. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels. 2022; 8(9): 568. doi:10.3390/gels8090568
72. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002; 23(22): 4307-4314. doi:10.1016/s0142-9612(02)00175-8
73. Aly AS. Self-dissolving chitosan, I. Preparation, characterization and evaluation for drug delivery system. Angew Makromol Chem. 1998; 259(1): 13-18. doi:10.1002/(SICI)1522-9505(19981001)259:1<13::AID-APMC13>3.0.CO;2-T
74. Maitra J, Shukla V. Cross-linking in hydrogels - a review. Am J Polym Sci. 2014; 4: 25-31.
75. Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008; 49(8): 1993-2007. doi:10.1016/ j.polymer.2008.01.027
76. Choudhury A, Venkatesh DN, P JK, M MAP. Advanced Wound Care with Biopolymers. Res J Pharm Technol. 2023; 16(5): 2512-2530. doi:10.52711/0974-360X.2023.00415
77. Bashir S, Hina M, Iqbal J, et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020; 12(11): 2702. doi:10.3390/polym12112702
78. Gupta NV, Shivakumar HG. Investigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite. Iran J Pharm Res IJPR. 2012; 11(2): 481-493. Accessed June 5, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3832170/
79. Ashames A, Pervaiz F, Al-Tabakha M, et al. Synthesis of cross-linked carboxymethyl cellulose and poly (2-acrylamido-2-methylpropane sulfonic acid) hydrogel for sustained drug release optimized by Box-Behnken Design. J Saudi Chem Soc. 2022; 26(6): 101541. doi:10.1016/j.jscs.2022.101541
80. Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater. 2018; 7(3): 153-174. doi:10.1007/s40204-018-0095-0