ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Aamna Parveen, Sagar Singh Jough

Email(s): amanaparveen64608@gmail.com

DOI: 10.5958/0974-4150.2020.00063.2   

Address: Aamna Parveen1*, Sagar Singh Jough2
1Department of Pharmaceutical Chemistry, University Institute of Pharmacy, CSJM University, Kanpur-208022, U.P., India.
2Department of Pharmacology, Ch. Sughar Singh Group of Institutions, Jaswantnagar, Etawah-206245, U.P., India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 5,     Year - 2020


ABSTRACT:
Characteristic phenolic mixtures have hindrance impacts on different malignancies. Thymol is one of these mixes present in a few plant sources, for example, ajowan (Trachyspermum ammi) organic products. In this research, thymol was assessed for its potential cytotoxic movement just as its impact on apoptotic quality articulation in bosom malignant growth cell line. We utilized the GC-MS strategy to distinguish the fundamental oil constituents of ajowan. MCF-7 cells were treated by different groupings of thymol and half greatest inhibitory focus (IC50) was assessed by 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazolium bromide test. Moreover, morphological modifications and changes of P21, P53 and Mcl-1 quality articulation in MCF-7 cells were explored by infinitesimal assessment and ongoing RT-PCR measure. Information from MTT measure demonstrated that the IC50 estimations of thymol on MCF-7 cells for 48 h and 72 h were 54 and 62 µg/mL, separately. Moreover, this compound essentially influenced quality articulations of P53 and P21, however not Mcl-1. Thymol can actuate the apoptosis procedure in MCF-7, and henceforth it very well may be viewed as an anticancer specialist later on.


Cite this article:
Aamna Parveen, Sagar Singh Jough. Study on the Cytotoxic Impacts of Thymol as the Segment of Trachyspermum ammi on Bosom Disease (MCF-7) Cells. Asian J. Research Chem. 2020; 13(5):327-333. doi: 10.5958/0974-4150.2020.00063.2

Cite(Electronic):
Aamna Parveen, Sagar Singh Jough. Study on the Cytotoxic Impacts of Thymol as the Segment of Trachyspermum ammi on Bosom Disease (MCF-7) Cells. Asian J. Research Chem. 2020; 13(5):327-333. doi: 10.5958/0974-4150.2020.00063.2   Available on: https://ajrconline.org/AbstractView.aspx?PID=2020-13-5-5


REFERENCES:
1.    B. Edwin Jose, P. Muralidharan. Effect of Azima tetracantha Lam on Human Breast Cancer Cells MCF -7 Research J. Science and Tech. 2019; 11(2):109-112.
2.    Enayatrad, M., Amoori, N. & Salehiniya, H. Epidemiology and trends in breast cancer mortality in Iran. Iranian journal of public health 44, 430 (2015).
3.    Maruthanila, V et al., J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer 24, 191 (2017).
4.    Emami, S. A. et al. Growth Inhibition and Apoptosis Induction of Essential Oils and Extracts of Nepeta cataria L on Human Prostatic and Breast Cancer Cell Lines. Asian Pacific journal of cancer prevention 17, 125 (2016).
5.    Lahlou, M. The success of natural products in drug discovery. Pharmacol Pharm 4, 17 (2013).
6.    Roy, A., Attre, T. & Bharadvaja, N. Anticancer agent from medicinal plants: a review. New apects in medicinal plants and pharmacognosy 1, 54 (2017).
7.    "Oldest evidence of breast cancer found in Egyptian skeleton". Reuters. 24 March 2015. Archived from the original on 27 March 2015. Retrieved 25 March 2015.
8.    "The History of Cancer". American Cancer Society. 25 March 2002. Archived from the original on 9 October 2006. Retrieved 9 October 2006.
9.    R D, Ahmad A et al., A New Profile of Therapeutic Potential and Toxicities of Antineoplastic Drugs. Research J. Pharmacology and Pharmacodynamics. 2010; 2(6): 370-375.
10.    Alfredo Morabia (2004). A History of Epidemiologic Methods and Concepts. Boston: Birkhauser. pp. 301–302. ISBN 978-3-7643-6818-0. Retrieved 31 December 2007.
11.    Jump up to: a b Sulik, Gayle A. (2010). Pink Ribbon Blues: How Breast Cancer Culture Undermines Women's Health. USA: Oxford University Press. pp. 200–3. ISBN 978-0-19-974045-1. OCLC 535493589
12.    Ferlay J, et al. Estimated Cancer Incidence, Mortality and Prevalance Worldwide in 2012. 2012. v1.0 (IARC CancerBase No. 11).
13.    Global Burden of Disease Cancer Collaboration, The global burden of cancer 2013. JAMA Oncol 2015. [PMC free article] [PubMed]
14.    Jemal A, et al., Global cancer statistics. CA Cancer J Clin. 2011; 61:69–90. [PubMed] [Google Scholar]
15.    National Cancer Registry Programme. National Centre for Disease Informatics and Research. and Indian Council of Medical Research., Three year report of population based cancer registries 2009–2011 national cancer registry programme. National Cancer Registry, 2013.
16.    Sharma K., Costas A., Shulman L.N., Meara J.G. A systematic review of barriers to breast cancer care in developing countries resulting in delayed patient presentation. J Oncol. 2012; 2012:8.
17.    N. Moualla, M. Naser. Using GC/MS to Study the Chemical Composition of Essential Oil of Thymus vulgaris L. at AL-Qadmous Area, Syria. Research J. Pharm. and Tech. 8(4): April, 2015; Page 437-442.
18.    Anjali Soni, Patel Femida, Preeti Sharma. In-vitro Cytotoxic Activity of Plant Saponin Extracts on Breast Cancer Cell-Line. Res. J. Pharmacognosy and Phytochem. 2017; 9(1): 17-22.2011; 3(1): 41-44.
19.    Sankaradoss Nirmala, et al., Investigation of In vitro Anti-cancer property of Adhatoda vasica in Hela, HepG2, MCF-7, MDAMB-231 Cell Lines. Res. J. Pharmacognosy and Phytochem. 2019; 11(4):212-216. Dubey
20.    Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., et al. (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 210, 402–414.
21.    Xue, J., Davidson, P. M., and Zhong, Q. (2016) Inhibition of Escherichia coli O157: H7and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin. Food Contr. 73, 1499–1506.
22.    A.K Meena, et al., Comparative Studies on Quality Assessment of Trachyspermum Ammi Linn. Seeds Collected from Different locations of Punjab State. Research J. Pharmacognosy and Phytochemistry
23.    Novy, P., Davidova, H., Serrano Rojero, C. S., Rondevaldova, J., Pulkrabek, J., et al. (2015) Composition and antimicrobial activity of Euphrasia rostkoviana Hayne essential oil. Evid. Based Complement. Altern. Med. 734101. https://doi.org/10.1155/2015/734101.
24.    Sobczak, M., Kalemba, D., Ferenc, B., and Zylinska, L. (2014) Limited protective properties of thymol and thyme oil on differentiated PC12 cells with downregulated Mgst1. J. Appl. Biomed. 12, 235–243.
25.    Güvenç, M., Cellat, M., Gökçek, _ I., Yavas¸, _ I., and Yurdagül Özsoy, Ş. (2018) Effects of thymol and carvacrol on sperm quality and oxidant/antioxidant balance in rats. Arch. Physiol. Biochem. 25, 1–8.
26.    N. V. S. Venugopal, V. Nageswara Raoand, B. Sumalatha. Spectrophotometric Determination of Naproxen Sodium with Bromocresol Green and Bromothymol Blue as Chromogenic Reagents. Asian J. Research Chem. 4(5): May, 2011; Page 715-718.
27.    Rakesh K. Joshi. Essential oil composition of Thymus linearis (Benth) from western Himalaya of Uttrakhand, India. Asian J. Pharm. Tech. 2016; 6(4): 199-201.
28.    Kang, S.–. H., Kim, Y.–. S., Kim, E.–. K., Hwang, J.–. W., and Jeong, J.–. H. (2016) Anticancer effect of thymol on AGS human gastric carcinoma cells. J. Microbiol. Biotechnol. 26, 28–37.
29.    Deepak Kumar Basedia, Birendra Shrivastava, B. K. Dubey, Pankaj Sharma. Synthesis and Anticancer Activity of Novel Substituted 1, 3, 4-oxadiazolo-[3, 2-a]-1, 3, 5-triazine and 1, 3, 4-thiadiazolo-[3, 2-a]-1, 3, 5-triazine Derivatives. Asian J. Research Chem. 7(3): March 2014; Page 310-315.
30.    Sharifi‐Rad, M., Nazaruk, J., Polito, L., Morais‐Braga, M. F. B., Rocha, J. E., et al. (2018) Matricariagenus as a source of antimicrobial agents: from farm to pharmacy and food applications. Microbiol. Res. 215, 76– 88.
31.    Satooka, H., and Kubo, I. (2012) Effects of thymol on B16‐F10 melanoma cells. J. Agric. Food Chem. 60, 2746– 2752.
32.    Shettigar, N. B., Das, S., Rao, N. B., and Rao, S. B. (2015) Thymol, a monoterpene phenolic derivative of cymene, abrogates mercury‐induced oxidative stress resultant cytotoxicity and genotoxicity in hepatocarcinoma cells. Environ. Toxicol. 30, 968– 980.
33.    Mendes‐da‐Silva, R. F., Lopes‐de‐Morais, A. A., Bandim‐da‐Silva, M. E., Cavalcanti, Gde., A., Rodrigues, A. R., et al. (2014) Prooxidant versus antioxidant brain action of ascorbic acid in well‐nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis. Neuropharmacology 86, 155– 160.
34.    Günes‐Bayir, A., Kocyigit, A., Güler, E. M., and Kiziltan, H. S. (in press) Effects of thymol, a natural phenolic compound, on human gastric adenocarcinoma cells in vitro. Altern Ther. Health Med. pii: AT5782.
35.    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature protocols 1: 1112-1116.
36.    M Lavanya, et al., Evaluation of Anticancer Activity of Ethanolic and Ethylacetoacetate Extracts of Sweet Cherry Against Human Breast Cancer Cell Line MCF-7. Research J. Pharmacology & Pharmacodynamics. 2016; 8(2): 65-70
37.    B. Wolf, M. Brischwein, V. Lob, J. Ressler, and J. Wiest, “Cellular signaling: aspects for tumor diagnosis and therapy,” Biomedizinische Technik, vol. 52, no. 1, pp. 164–168, 2007.
38.    J. J. Lu, Y. Y. Dang, M. Huang, W. S. Xu, X. P. Chen, and Y. T. Wang, “Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae—a review,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 406–411, 2012.
39.    A. M. Hunter, E. C. LaCasse, and R. G. Korneluk, “The inhibitors of apoptosis (IAPs) as cancer targets,” Apoptosis, vol. 12, no. 9, pp. 1543–1568, 2007.
40.    C. C. Wu and S. B. Bratton, “Regulation of the intrinsic apoptosis pathway by reactive oxygen species,” Antioxidants and Redox Signaling, vol. 19, no. 6, pp. 546–558, 2013.
41.    V. Baldin, et al., “Cyclin D1 is a nuclear protein required for cell cycle progression in G1,” Genes and Development, vol. 7, no. 5, pp. 812–821, 1993.
42.    J. Adelaide, G. Monges, C. Derderian, J.-F. Seitz, and D. Birnbaum, “Oesophageal cancer and amplification of the human cyclin D gene CCND1/PRAD1,” British Journal of Cancer, vol. 71, no. 1, pp. 64–68, 1995.
43.    L. M. Gumbiner, P. H. Gumerlock, P. C. Mack et al., “Overexpression of cyclin D1 is rare in human prostate carcinoma, ” Prostate, vol. 38, no. 1, pp. 40–45, 1999.
44.    E. Peurala, et al., “The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer,” Breast Cancer Research, vol. 15, no. 1, article R5, 2013.
45.    B. B. Aggarwal, et al., “Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies,” Anticancer Research, vol. 24, no. 5, pp. 2783–2840, 2004.
46.    S. Shukla and S. Gupta, “Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells,” Cell Cycle, vol. 6, no. 9, pp. 1102–1114, 2007.
47.    A. Shehzad, F. Wahid, and Y. S. Lee, “Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials,” Archiv der Pharmazie, vol. 343, no. 9, pp. 489–499, 2010.
48.    K. A. Hwang, et al., “Genistein, a soyphytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17β-estradiol or bisphenol A via the inhibition of cell cycle progression,” International Journal of Oncology, vol. 42, no. 2, pp. 733–740, 2013.
49.    A. T. Koparal and M. Zeytinoglu, “Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549,” Cytotechnology, vol. 43, no. 1–3, pp. 149–154, 2003
50.    K. M. Arunasree, “Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231,” Phytomedicine, vol. 17, no. 8-9, pp. 581–588, 2010.
51.    S. Karkabounas, O. K. Kostoula, T. Daskalou et al., “Anticarcinogenic and antiplatelet effects of carvacrol,” Experimental Oncology, vol. 28, no. 2, pp. 121–125, 2006.

Recomonded Articles:

Author(s): Prathima Patil, S.P. Sethy, T. Sameena, K. Shailaja

DOI:         Access: Open Access Read More

Author(s): Alka Verma, Bhupesh Verma, Sunil Kumar Prajapati, Kishu Tripathi

DOI:         Access: Open Access Read More

Author(s): Tauseef Shaikh, Atar Mujum , Khan Wasimuzzama, Rukhsana A Rub

DOI:         Access: Open Access Read More

Author(s): Naik YK, Khare A, Choudhary PL, Goel BK, Shrivastava A

DOI:         Access: Open Access Read More

Author(s): Kadhiravansivasamy, S. Sivajiganesan, T. Periyathambi, V. Nandhakumar, M. Pugazhenthi

DOI: 10.5958/0974-4150.2017.00016.5         Access: Open Access Read More

Author(s): U. Sahoo, S. Biswal, S. Sethy, H.K.S. Kumar, M. Banerjee

DOI:         Access: Open Access Read More

Author(s): A. K. Meena, A. K. Mangal, M. M. Rao, P. Panda, G. V. Simha, S. K. Shakya, M. M. Padhi, Ramesh Babu

DOI:         Access: Open Access Read More

Author(s): S. N. Battin, A. H. Manikshete, S. K. Sarasamkar, M. R. Asabe, D. J. Sathe

DOI: 10.5958/0974-4150.2017.00112.2         Access: Open Access Read More

Author(s): S Kalidas, B Kameswari, P Devi, B Madhumitha, R Meera, NJ Merlin

DOI:         Access: Open Access Read More

Author(s): Rukhsana A. Rub, Asma Mukadam, Javed Pinjari, Ajaz Nathani, Aaisha Sagri

DOI:         Access: Open Access Read More

Author(s): N. V. S. Venugopal, V. Nageswara Raoand, B. Sumalatha

DOI:         Access: Open Access Read More

Author(s): Nikhil D. Shirsat, S. A. Momin, Ashish A. Bandekar, Usha Sayed

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags