ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Vishal V. Sawant, Bharatee P. Chaudhari, Vivekkumar K. Redasani

Email(s): vishalsawantvs25@gmail.com

DOI: 10.52711/0974-4150.2024.00052   

Address: Vishal V. Sawant, Bharatee P. Chaudhari, Vivekkumar K. Redasani
YSPM’S, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe, Satara (415001)
*Corresponding Author

Published In:   Volume - 17,      Issue - 5,     Year - 2024


ABSTRACT:
Due to the rise in immunocompromised patients, infections caused by Candida species have increased rapidly globally. Clinical practitioners have implemented a number of measures for the prevention and treatment of candidiasis. Fluconazole, amphotericin B, nystatin, and flucytosine are among the many antifungal medications that are frequently used to treat individuals with Candida infection. In addition, numerous efflux pump inhibitors have been developed and examined in various models for the successful treatment of candidiasis. Biomedicines, such as antibodies and polysaccharide-peptide conjugates, may be safer and more effective solutions for treating and preventing diseases than manufactured pharmaceuticals, which can have negative side effects. Additionally, the ability to investigate how genes function in adhesion, penetration, and other processes has been made possible by the availability of genome sequences of Candida albicans and other non-albicans strains. For a considerable amount of time, harmless commensals known as Candida species have been associated with humans. They are frequently observed on human skin, gastrointestinal, and genitourinary tract mucosal surfaces. However, in patients with impaired immune systems, they transform into opportunistic infections. Because they are opportunistic pathogens, they can lead to systemic infections as well as localized mucosal infections. The effective management of candidiasis has faced a significant and daunting challenge as a result, and costs have multiplied.


Cite this article:
Vishal V. Sawant, Bharatee P. Chaudhari, Vivekkumar K. Redasani. Review on Drugs Acting on Candida Infection and Their Treatment. Asian Journal of Research in Chemistry.2024; 17(5):301-6. doi: 10.52711/0974-4150.2024.00052

Cite(Electronic):
Vishal V. Sawant, Bharatee P. Chaudhari, Vivekkumar K. Redasani. Review on Drugs Acting on Candida Infection and Their Treatment. Asian Journal of Research in Chemistry.2024; 17(5):301-6. doi: 10.52711/0974-4150.2024.00052   Available on: https://ajrconline.org/AbstractView.aspx?PID=2024-17-5-8


REFERENCES:
1.    F. C. Odds, Candida and Candidosis, Bailliere Tindall, London, UK, 2nd edition, 1988.
2.    M. H. Miceli, J. A. Díaz, and S. A. Lee. Emerging opportunistic yeast infections. The Lancet Infectious Diseases. 2011; 11(2):  142–151.
3.    M. A. Pfaller, P. G. Pappas, and J. R. Wingard. Invasive fungal pathogens: current epidemiological trends. Clinical Infectious Diseases, 2006; 43(1): S3–S14.
4.    L. S. Wilson, C. M. Reyes, M. Stolpman, J. Speckman, K. Allen, and J. Beney. The direct cost and incidence of systemic fungal infections. Value in Health. 2002; 5(1): 26–34.
5.    J. D. Sobel. Vaginitis, The New England Journal of Medicine. 1997; 337(26): 1896– 1903.
6.    A. K. Gupta, D. N. Sauder, and N. H. Shear. Antifungal agents: an overview. Part I. Journal of the American Academy of Dermatology. 1994: 30(5): 677–698.
7.    M. Borgers. Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Reviews of Infectious Diseases. 1980; 2(4): 520–534.
8.    H. Van Den Bossche, J. M. Ruysschaert, and F. Defrise-Quertain. The interaction of miconazole and ketoconazole with lipids. Biochemical Pharmacology. 1982; 31(16): 2609–2617.
9.    D. J. Sheehan, C. A. Hitchcock, and C. M. Sibley. Current and emerging azole antifungal agents. Clinical Microbiology Reviews. 1999; 12(1): 40–79.
10.    D. C. Lamb, D. E. Kelly, M. R. Waterman, M. Stromstedt, D. Rozman, and S. L. Kelly. Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candidaalbicans CYP51 with azole antifungal agents. Yeast. 1999; 15(9); 755–763.
11.    C. A. Hitchcock, K. Dickinson, S. B. Brown, E. G. V. Evans, and D. J. Adams. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candidaalbicans. Biochemical Journal. 266(2): 475–480.
12.    R. Courtney, S. Pai, M. Laughlin, J. Lim, and V. Batra. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrobial Agents and Chemotherapy. 2003; 47(9): 2788–2795.
13.    A. J. Carrillo-Muñoz, G. Giusiano, P. A. Ezkurra, and G. Quindós. Antifungal agents: mode of action in yeast cells. Revista Espanola de Quimioterapia. 2006; 19(2): 130–139.
14.    Y. Q. Zhang, S. Gamarra, G. Garcia-Effron, S. Park, D. S. Perlin, and R. Rao. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathogens. 2010; 6(6): e1000939
15.    F. C. Odds, A. Cockayne, J. Hayward, and A. B. Abbott. Effects of imidazole- and triazole- derivative antifungal compounds on the growth and morphological development of Candidaalbicans hyphae. Journal of General Microbiology. 1985; 131(10): 2581–2589.
16.    D. M. Arana, C. Nombela, and J. Pla. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candidaalbicans to phagocytes. The Journal of Antimicrobial Chemotherapy. 2010; 65(1): 54–62.
17.    N. M. Witzke and R. Bittman. Dissociation kinetics and equilibrium binding properties of polyene antibiotic complexes with phosphatidylcholine/sterol vesicles. Biochemistry. 1984; 23(8): 1668–1674.
18.    R. Mouri, K. Konoki, N. Matsumori, T. Oishi, and M. Murata. Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance. Biochemistry. 2008; 47(30): 7807–7815.
19.    R. S. Al-Dhaheri and L. J. Douglas. Apoptosis in Candida biofilms exposed to amphotericin B. Journal of Medical Microbiology. 2010; 59(2): 149–157.
20.    R. F. Hector. Compounds active against cell walls of medically important fungi. Clinical Microbiology Reviews. 1993; 6(1): 1–21.
21.    A. C. Reboli, A. F. Shorr, C. Rotstein et al. Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candida albicans: a multivariate analysis of factors associated with improved outcome. BMC Infectious Diseases. 2011; 11: article 261.
22.    N. H. Georgopapadakou and A. Bertasso. Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrobial Agents and Chemotherapy. 1992A; 36(8): 1779–1781
23.    K. Gupta, J. E. Ryder, and E. A. Cooper. Naftifine: a review. Journal of Cutaneous Medicine and Surgery. 2008; 12(2): 51–58.
24.    R. B. Diasio, J. E. Bennett, and C. E. Myers. Mode of action of 5-fluorocytosine. Biochemical Pharmacology. 1978; 27(5): 703–707.  
25.    A. Vermes, H. J. Guchelaar, and J. Dankert. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy. 2000; 46(2): 171–179.
26.    J. Morschhäuser. Regulation of multidrug resistance in pathogenic fungi. Fungal Genetics and Biology. 2010; 47(2): 94–106,.
27.    R. D. Cannon, E. Lamping, A. R. Holmes et al. Efflux-mediated antifungal drug resistance. Clinical Microbiology Reviews. 2009; 22(2): 291–321.
28.    R. J. P. Dawson and K. P. Locher. Structure of a bacterial multidrug ABC transporter. Nature. 2006; 443(7108): 180–185.
29.    R. J. P. Dawson and K. P. Locher. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Letters. 2007; 581(5): 935–938.
30.    H. W. Pinkett, A. T. Lee, P. Lum, K. P. Locher, and D. C. Rees. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science. 2007; 315(5810): 373–377.
31.    M.    Florent, T. Noël, G. Ruprich-Robert et al. Nonsense and missense mutations in FCY2 and FCY1 genes are responsible for flucytosine resistance and flucytosine-fluconazole cross-resistance in clinical isolates    of Candida lusitaniae. Antimicrobial Agents and Chemotherapy. 2009; 53(7): 2982–2990.
32.    N. Papon, T. Noël, M. Florent et al. Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrobial Agents and Chemotherapy. 2007; 51(1): 369– 371.
33.    A. R. Dodgson, K. J. Dodgson, C. Pujol, M. A. Pfaller, and D. R. Soll. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candidaalbicans. Antimicrobial Agents and Chemotherapy. 2004; 48(6): 2223–2227.

Recomonded Articles:

Author(s): Saima Jadoon, Arif Malik, M.H. Qazi, Muhammad Aziz

DOI:         Access: Open Access Read More

Author(s): S. N. Battin, A. H. Manikshete, S. K. Sarasamkar, M. R. Asabe, D. J. Sathe

DOI: 10.5958/0974-4150.2017.00112.2         Access: Open Access Read More

Author(s): T.V. Yuvaraj, S. Hurmath Unnissa, N.S.Surendiran, M. Azeez Ur rahman, V.Binumon

DOI:         Access: Open Access Read More

Author(s): J Vanitha, A Saravana Kumar, M Ganesh, VS Saravanan

DOI:         Access: Open Access Read More

Author(s): Virupakshi Prabhakar, K. Sudhakar Babu, L. K. Ravindranath, B. Venkateswarlu

DOI: 10.5958/0974-4150.2017.00046.3         Access: Open Access Read More

Author(s): Virupakshi Prabhakar, K. Sudhakar Babu, . L. K. Ravindranath, B.Venkateswarlu

DOI: 10.5958/0974-4150.2017.00035.9         Access: Open Access Read More

Author(s): Bhavna Patel, Zarna Dedania, Ronak Dedania, Chetan Ramolia, G Vidya Sagar, Mehta RS

DOI:         Access: Open Access Read More

Author(s): Chittaranjan Bhanja, Satyaban Jena

DOI:         Access: Open Access Read More

Author(s): Vijaya B Reddy, Rajeev K, Singla Varadaraj Bhat G, Gautham G Shenoy

DOI:         Access: Open Access Read More

Author(s): Ashok A. Hajare, Mahesh N. Mali, Sushil Sarvagod, Sachin Kurane, Shweta Patwardhan, Arun S. Dange

DOI:         Access: Open Access Read More

Author(s): Chavan Pooja Ajit, Shelar Reshma Dattatraya, Shelake Pallavi Ramchandra, Avinash Mahadeo Bhagwat, Ajit Bhiva Ekal

DOI: 10.52711/0974-4150.2021.00065         Access: Open Access Read More

Author(s): Merlin NJ, Parthasarathy V, Manavalan R, Devi P, Meera R

DOI:         Access: Open Access Read More

Author(s): Fares Hezam Al-Ostoot, Vidya, R. , Zabiulla, Yasser Hussein Eissa Mohammed, Mahima Jyothi, Pallavi. H.M, Shaukath Ara Khanum

DOI: 10.5958/0974-4150.2018.00055.X         Access: Open Access Read More

Author(s): Y. A. Jaliwala,Rahul Chaturvedi, Arvind Rathore, Amit Pandit, P.K. Mohanty

DOI:         Access: Open Access Read More

Author(s): Mustehasan, Misbahuddin Azhar

DOI: 10.52711/0974-4150.2022.00064         Access: Open Access Read More

Author(s): Mohammad Yunoos, Ch. Bharadwaj, V. Sandeep, S. Rajesh, Ch. Krishna

DOI: 10.5958/0974-4150.2015.00041.3         Access: Open Access Read More

Author(s): B.S. Virupaxappa, K.H. Shivaprasad, Raviraj M. Kulkarni, M.S. Latha

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags